Fine-tuning ResNet-50 for the classification of visual impairments from retinal fundus images

眼底(子宫) 残差神经网络 视网膜 人工智能 计算机科学 验光服务 计算机视觉 眼科 医学 深度学习
作者
Helmi Imaduddin,Ihsan Cahyo Utomo,Dimas Aryo Anggoro
出处
期刊:International Journal of Power Electronics and Drive Systems 卷期号:14 (4): 4175-4175
标识
DOI:10.11591/ijece.v14i4.pp4175-4182
摘要

The sense of sight plays a crucial role in human perception, as it serves as our primary sensory organ for perceiving light. However, a considerable number of individuals experience a wide range of vision impairments. These impairments encompass diverse conditions such as diabetic retinopathy, glaucoma, and cataracts. Each visual impairment exhibits unique characteristics and symptoms, highlighting the need for timely and accurate detection to facilitate appropriate treatment and prevent vision loss. This research aims to develop a deep learning-based system specifically designed to detect visual impairments. The proposed solution involves creating a model using the ResNet-50 algorithm as the foundational methodology, and fine-tuning multiple parameters to enhance the model's performance. The research utilizes a dataset consisting of retinal fundus images, which are categorized into four distinct classes: diabetic retinopathy, glaucoma, cataracts, and normal. The findings demonstrate the effectiveness of the model, achieving an impressive accuracy score of 92%. This signifies a significant improvement of 6% over the accuracy achieved in the previous study, which stood at 86%. The implementation of this system is expected to make a significant contribution to the rapid and accurate detection of various eye disorders in the future, enabling timely intervention and prevention of visual impairment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花乌龙完成签到,获得积分10
1秒前
sukiwa7发布了新的文献求助20
1秒前
绿地土狗发布了新的文献求助10
2秒前
嘻嘻完成签到,获得积分20
2秒前
3秒前
lolo发布了新的文献求助10
3秒前
TheGala完成签到,获得积分10
4秒前
WH发布了新的文献求助10
4秒前
抹不掉的记忆完成签到,获得积分10
4秒前
小臭发布了新的文献求助10
4秒前
JamesPei应助可乐采纳,获得10
5秒前
和谐的敏完成签到,获得积分10
5秒前
6秒前
wuludie应助豆子采纳,获得10
6秒前
开朗发卡完成签到,获得积分10
6秒前
阿泽完成签到,获得积分10
6秒前
上官若男应助Emma采纳,获得10
7秒前
7秒前
吗喽完成签到,获得积分10
7秒前
好好学习发布了新的文献求助10
8秒前
8秒前
复杂方盒发布了新的文献求助10
10秒前
lytelope发布了新的文献求助10
10秒前
zhanghan完成签到,获得积分10
10秒前
ZH的天方夜谭完成签到,获得积分20
11秒前
12秒前
12秒前
jimmy发布了新的文献求助10
13秒前
LYchem完成签到,获得积分10
13秒前
慕青应助Gardenia采纳,获得10
13秒前
Ava应助小京子采纳,获得10
13秒前
小二郎应助威武青亦采纳,获得10
14秒前
14秒前
zhu发布了新的文献求助10
14秒前
WH完成签到,获得积分20
15秒前
WangKai发布了新的文献求助10
16秒前
16秒前
rwh完成签到,获得积分10
16秒前
automan完成签到,获得积分10
16秒前
lytelope完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064