Salicylic acid-mediated alleviation of salt stress: Insights from physiological and transcriptomic analysis in Asarum sieboldii Miq

水杨酸 化学 盐(化学) 转录组 传统医学 植物 生物 生物化学 基因 基因表达 医学 有机化学
作者
Muhammad Kashif,Jiyuan Feng,Ruixian Dai,Yuling Fan,Yufei Xia,Zhong Liu
出处
期刊:Chemosphere [Elsevier]
卷期号:362: 142604-142604
标识
DOI:10.1016/j.chemosphere.2024.142604
摘要

As global agriculture faces the pressing threat of salt stress, innovative solutions are imperative for sustainable agriculture. The remarkable potential of salicylic acid (SA) in enhancing plant resilience against environmental stressors has recently gained attention. However, the specific molecular mechanisms by which SA mitigates salt stress in Asarum sieboldii Miq., a valuable medicinal plant, remain poorly understood. Here, we evaluated the physiological and transcriptomic regulatory responses of A. sieboldii under salt stress (100 mM NaCl), both in the presence (1 mM SA) and absence of exogenous SA. The results highlighted that SA significantly alleviates salt stress, primarily through enhancing antioxidant activities as evidenced by increased superoxide dismutase, and peroxidase activities. Additionally, we observed an increment in chlorophyll (a and b), proline, total soluble sugar, and plant fresh weight, along with a decrease in malondialdehyde contents. Transcriptome analysis suggested consistency in the regulation of many differentially expressed genes and transcription factors (TFs); however, genes targets (GSTs, TIR1, and NPR1), and TFs (MYB, WRKY, TCP, and bHLH) possessed expressional uniqueness, and majority had significantly up-regulated trends in SA-coupled salt stress treatments. Further, bioinformatics and KEGG enrichment analysis indicated several SA-induced significantly enriched biological pathways. Specifically, plant hormone signal transduction was identified as being populated with key genes distinctive to auxin, cytokinin, ethylene, and salicylic acid signaling, suggesting their important role in salt stress alleviation. Inclusively, this report presents a comprehensive analysis encompassing gene targets, TFs, and biological pathways, and these insights may offer a valuable contribution to our knowledge of SA-mediated regulation and its crucial role in enhancing plant defense against diverse abiotic stressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级幻梅发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
Lee完成签到,获得积分10
3秒前
活泼山雁发布了新的文献求助10
3秒前
辉辉发布了新的文献求助10
4秒前
4秒前
辻辰完成签到,获得积分20
5秒前
6秒前
SciGPT应助超级幻梅采纳,获得10
6秒前
小鲨鱼完成签到,获得积分10
6秒前
Harbour-Y完成签到,获得积分10
7秒前
8秒前
热心的诗蕊完成签到,获得积分10
8秒前
9秒前
Camellia发布了新的文献求助10
10秒前
其华完成签到 ,获得积分10
10秒前
Harbour-Y发布了新的文献求助10
10秒前
11秒前
wzzzzzy完成签到,获得积分10
11秒前
可爱以冬完成签到 ,获得积分10
12秒前
李博文完成签到,获得积分10
12秒前
NexusExplorer应助李大龙采纳,获得10
13秒前
zxt12305313完成签到 ,获得积分10
14秒前
阿狸发布了新的文献求助10
14秒前
完美世界应助干净的老虎采纳,获得10
14秒前
15秒前
怎么会睡不醒完成签到 ,获得积分10
15秒前
WQ发布了新的文献求助10
15秒前
16秒前
小晓完成签到,获得积分10
16秒前
朴实海亦完成签到,获得积分10
16秒前
团结完成签到 ,获得积分10
16秒前
细心香烟完成签到 ,获得积分10
18秒前
苹果易真发布了新的文献求助10
18秒前
灵巧的羽毛完成签到,获得积分10
19秒前
19秒前
20秒前
buder发布了新的文献求助10
20秒前
酷波er应助Chen采纳,获得30
23秒前
腾腾发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012