Bi-syntax guided transformer network for aspect sentiment triplet extraction

计算机科学 变压器 语法 自然语言处理 人工智能 情绪分析 电气工程 工程类 电压
作者
Shufeng Hao,Yu Zhou,Ping Liu,Shuang Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:594: 127880-127880 被引量:4
标识
DOI:10.1016/j.neucom.2024.127880
摘要

Aspect Sentiment Triplet Extraction is an emerging and challenging task that attempts to present a complete picture of aspect-based sentiment analysis. Prior research efforts mostly leverage various tagging schemes to extract the three elements in a triplet. However, these methods fail to explicitly model the complicated relations between aspects and opinions and the boundaries of multi-word aspects and opinions. In this paper, we propose a bi-syntax guided transformer network in an end-to-end manner to address these challenges. Firstly, we devise three types of representations, including sequence distance representation, constituency distance representation, and dependency distance representation, to learn the comprehensive language representation. Specifically, sequence distance representation utilizes sequence distance between words to enhance the contextual representation. Constituency distance representation adopts constituency distance between words in a constituency tree to capture the intra-span relation between words. Dependency distance representation employs dependency distance between words in a dependency tree to capture the long-distance relation between aspects and opinions. Extensive experiments are conducted on four benchmark datasets to validate the effectiveness of our method. The results demonstrate that the proposed approach achieves better performance than baseline methods. We conduct further detailed analysis to demonstrate that our method effectively handles multi-word terms and overlapping triplets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光火车发布了新的文献求助10
1秒前
1秒前
felix发布了新的文献求助10
2秒前
chao Liu完成签到,获得积分10
2秒前
2秒前
3秒前
所所应助靓丽的山蝶采纳,获得10
3秒前
Raiden发布了新的文献求助20
3秒前
222发布了新的文献求助10
4秒前
研友_Z7Xdl8发布了新的文献求助10
4秒前
酷波er应助沉默靳采纳,获得10
5秒前
老实莫言发布了新的文献求助10
5秒前
7秒前
正之发布了新的文献求助10
8秒前
9秒前
科研小民工应助chao Liu采纳,获得100
9秒前
9秒前
nn发布了新的文献求助30
9秒前
FashionBoy应助222采纳,获得10
10秒前
轻松绿旋完成签到,获得积分10
11秒前
13秒前
13秒前
linnn完成签到,获得积分10
13秒前
勤奋的天蓝完成签到,获得积分10
13秒前
英姑应助777采纳,获得10
13秒前
14秒前
Jasper应助老实莫言采纳,获得10
15秒前
15秒前
demoliu完成签到,获得积分10
17秒前
墨冉发布了新的文献求助10
18秒前
阳阳发布了新的文献求助10
19秒前
满意的涵菱完成签到 ,获得积分10
19秒前
沉默靳发布了新的文献求助10
20秒前
慕青应助开朗馒头采纳,获得10
21秒前
22秒前
22秒前
24秒前
隐形曼青应助超帅的谷蓝采纳,获得80
24秒前
HMONEY应助淡然的香薇采纳,获得30
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427