Bi-syntax guided transformer network for aspect sentiment triplet extraction

计算机科学 变压器 语法 自然语言处理 人工智能 情绪分析 电气工程 工程类 电压
作者
Shufeng Hao,Yu Zhou,Ping Liu,Shuang Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:594: 127880-127880 被引量:4
标识
DOI:10.1016/j.neucom.2024.127880
摘要

Aspect Sentiment Triplet Extraction is an emerging and challenging task that attempts to present a complete picture of aspect-based sentiment analysis. Prior research efforts mostly leverage various tagging schemes to extract the three elements in a triplet. However, these methods fail to explicitly model the complicated relations between aspects and opinions and the boundaries of multi-word aspects and opinions. In this paper, we propose a bi-syntax guided transformer network in an end-to-end manner to address these challenges. Firstly, we devise three types of representations, including sequence distance representation, constituency distance representation, and dependency distance representation, to learn the comprehensive language representation. Specifically, sequence distance representation utilizes sequence distance between words to enhance the contextual representation. Constituency distance representation adopts constituency distance between words in a constituency tree to capture the intra-span relation between words. Dependency distance representation employs dependency distance between words in a dependency tree to capture the long-distance relation between aspects and opinions. Extensive experiments are conducted on four benchmark datasets to validate the effectiveness of our method. The results demonstrate that the proposed approach achieves better performance than baseline methods. We conduct further detailed analysis to demonstrate that our method effectively handles multi-word terms and overlapping triplets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习完成签到 ,获得积分10
刚刚
可积完成签到,获得积分10
1秒前
fd163c应助白潇潇采纳,获得10
2秒前
Bio应助文艺的千亦采纳,获得150
3秒前
3秒前
3秒前
3秒前
科研渣渣完成签到,获得积分10
4秒前
匹诺曹发布了新的文献求助10
4秒前
超级的西装完成签到 ,获得积分20
4秒前
由北发布了新的文献求助10
4秒前
Jasper应助珞槿采纳,获得10
4秒前
萨尔莫斯完成签到,获得积分10
4秒前
HH完成签到,获得积分10
5秒前
黄晓荷完成签到,获得积分20
5秒前
给我个二硫碘化钾完成签到,获得积分10
6秒前
读的很痛苦完成签到,获得积分10
6秒前
冷傲的尔白完成签到,获得积分10
7秒前
7秒前
和谐谷蕊完成签到,获得积分10
7秒前
橙子发布了新的文献求助10
7秒前
8秒前
yar完成签到,获得积分0
8秒前
8秒前
8秒前
8秒前
顾暖完成签到,获得积分10
8秒前
隐形曼青应助囚徒采纳,获得10
9秒前
10秒前
英俊安蕾发布了新的文献求助10
10秒前
苹果发布了新的文献求助10
10秒前
繁荣的萝莉完成签到,获得积分10
10秒前
10秒前
11秒前
Ava应助苏氨酸采纳,获得30
11秒前
12秒前
胡燕完成签到 ,获得积分10
12秒前
lirongcas完成签到,获得积分20
12秒前
隐形觅翠发布了新的文献求助10
12秒前
SYLH应助聪慧冰淇淋采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650