Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
4秒前
田様应助潇洒的茗茗采纳,获得10
5秒前
常涑完成签到,获得积分10
5秒前
kmario发布了新的文献求助30
6秒前
6秒前
111完成签到,获得积分10
7秒前
七七发布了新的文献求助10
7秒前
清爽寒梦发布了新的文献求助10
7秒前
lsyt发布了新的文献求助30
8秒前
balabala完成签到 ,获得积分10
8秒前
怡然新之发布了新的文献求助10
8秒前
9秒前
温童发布了新的文献求助10
9秒前
11秒前
刻苦小丸子完成签到,获得积分10
12秒前
12秒前
酷波er应助潇洒夜安采纳,获得10
12秒前
13秒前
ppbk完成签到 ,获得积分10
13秒前
哆来米发布了新的文献求助10
14秒前
14秒前
乐乐应助温童采纳,获得10
16秒前
科目三应助tjcu采纳,获得10
16秒前
深情安青应助mark2021采纳,获得30
17秒前
佛系发布了新的文献求助10
18秒前
18秒前
lsyt完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
lucky发布了新的文献求助10
20秒前
KYT完成签到 ,获得积分10
20秒前
ll完成签到,获得积分10
20秒前
所所应助勤恳凌丝采纳,获得10
20秒前
zhoujingya完成签到,获得积分10
21秒前
30完成签到,获得积分10
21秒前
Carrie完成签到 ,获得积分10
22秒前
23秒前
盏盏发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425091
求助须知:如何正确求助?哪些是违规求助? 4539235
关于积分的说明 14166259
捐赠科研通 4456389
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412539