亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April完成签到 ,获得积分0
3秒前
田様应助耶耶采纳,获得10
4秒前
7秒前
8秒前
安详的芷发布了新的文献求助10
12秒前
Nina完成签到 ,获得积分10
15秒前
wuxixi发布了新的文献求助10
16秒前
754完成签到,获得积分10
18秒前
失眠的香蕉完成签到 ,获得积分10
21秒前
22秒前
小王发布了新的文献求助10
26秒前
TRISTE完成签到 ,获得积分10
28秒前
oldblack完成签到,获得积分10
33秒前
充电宝应助njxray采纳,获得10
33秒前
小枣完成签到 ,获得积分10
34秒前
小王完成签到,获得积分10
39秒前
hi_traffic完成签到,获得积分10
39秒前
LYF完成签到 ,获得积分10
39秒前
紧张的水蜜桃关注了科研通微信公众号
46秒前
48秒前
Layover完成签到 ,获得积分10
54秒前
归尘发布了新的文献求助10
55秒前
wuxixi完成签到,获得积分20
57秒前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
搞怪腊肠发布了新的文献求助10
1分钟前
1分钟前
1分钟前
耶耶发布了新的文献求助10
1分钟前
贪玩的蝴蝶完成签到 ,获得积分10
1分钟前
bbbabo发布了新的文献求助10
1分钟前
Owen应助耶耶采纳,获得10
1分钟前
1分钟前
魔幻大有完成签到 ,获得积分10
1分钟前
阿鑫完成签到 ,获得积分10
1分钟前
耶耶完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144916
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791737
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622