Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey发布了新的文献求助10
1秒前
小龙人发布了新的文献求助10
1秒前
2秒前
魏嘉轩发布了新的文献求助10
2秒前
米娅发布了新的文献求助10
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
无花果应助water采纳,获得10
3秒前
4秒前
4秒前
4秒前
科研通AI2S应助Wangyingjie5采纳,获得10
4秒前
SciGPT应助QQ采纳,获得10
4秒前
Lili完成签到,获得积分20
4秒前
4秒前
大模型应助Qq采纳,获得10
4秒前
羽安完成签到,获得积分10
5秒前
科研通AI5应助sunyanghu369采纳,获得10
5秒前
5秒前
温馨完成签到,获得积分10
5秒前
Hello应助斯莫佩尔采纳,获得10
5秒前
6秒前
semigreen发布了新的文献求助10
6秒前
Lili发布了新的文献求助10
7秒前
明期发布了新的文献求助10
7秒前
7秒前
Liu发布了新的文献求助10
8秒前
姚夏完成签到,获得积分10
8秒前
张旭卓发布了新的文献求助10
8秒前
8秒前
Akim应助苹果宝宝采纳,获得10
8秒前
共享精神应助HJJHJH采纳,获得10
9秒前
Sheryl完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022