Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大闲鱼铭一完成签到 ,获得积分10
刚刚
keke完成签到,获得积分20
刚刚
2秒前
jasper完成签到,获得积分20
2秒前
Dr Niu发布了新的文献求助10
3秒前
jjbl完成签到 ,获得积分10
4秒前
4秒前
4秒前
无辜牛青发布了新的文献求助10
5秒前
5秒前
兰先生完成签到,获得积分10
6秒前
7秒前
HMLM完成签到,获得积分10
7秒前
百里烬言发布了新的文献求助10
7秒前
8秒前
搜集达人应助Jimmybythebay采纳,获得10
8秒前
8秒前
包惜筠完成签到 ,获得积分10
9秒前
oo发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
不安姿发布了新的文献求助10
10秒前
11秒前
南北发布了新的文献求助10
11秒前
zfcc完成签到,获得积分10
11秒前
chancewong发布了新的文献求助10
11秒前
做梦完成签到,获得积分10
12秒前
12秒前
太阳阳发布了新的文献求助10
13秒前
NexusExplorer应助内向的水桃采纳,获得10
13秒前
nice完成签到,获得积分20
15秒前
等待黎明发布了新的文献求助10
16秒前
烟花应助oo采纳,获得10
16秒前
16秒前
17秒前
萧东辰完成签到,获得积分10
17秒前
YY完成签到,获得积分10
18秒前
大个应助SAINT采纳,获得10
18秒前
小红花完成签到,获得积分20
19秒前
19秒前
yuanqi完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663