Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激情的乐儿完成签到,获得积分10
3秒前
ziyiziyi发布了新的文献求助10
4秒前
在水一方应助儒雅冰岚采纳,获得10
5秒前
斯文败类应助东方即白采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
liuke完成签到,获得积分10
5秒前
36456657应助科研通管家采纳,获得10
5秒前
踏雪寻梅应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
guo应助科研通管家采纳,获得10
5秒前
奥利给完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得100
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
唐僧肉应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
zzz驳回了iNk应助
6秒前
白日幻想家完成签到 ,获得积分10
7秒前
活力的泥猴桃完成签到 ,获得积分10
9秒前
bbn完成签到,获得积分10
9秒前
怡然的无敌完成签到,获得积分10
9秒前
ding应助ziyiziyi采纳,获得10
10秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
11秒前
耶耶完成签到,获得积分10
11秒前
LL完成签到 ,获得积分10
11秒前
儒雅冰岚完成签到,获得积分10
11秒前
Le~le完成签到 ,获得积分10
12秒前
陶醉的斓完成签到,获得积分10
12秒前
13秒前
Hello应助小谷采纳,获得10
13秒前
Hello应助谷捣猫宁采纳,获得10
13秒前
善学以致用应助hulin_zjxu采纳,获得10
14秒前
科研通AI2S应助122采纳,获得10
14秒前
蓝天完成签到,获得积分10
16秒前
zzz应助meme采纳,获得10
17秒前
复杂不二完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461317
求助须知:如何正确求助?哪些是违规求助? 3055029
关于积分的说明 9046143
捐赠科研通 2744961
什么是DOI,文献DOI怎么找? 1505775
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264