Cross-Modality Synthetic Data Augmentation using GANs: Enhancing Brain MRI and Chest X-ray Classification

模态(人机交互) 医学 放射科 核医学 人工智能 计算机科学 医学物理学
作者
Kunaal Dhawan,Siddharth S. Nijhawan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.09.24308649
摘要

II. Abstract Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data representing healthy lungs and various pneumonia conditions, including viral and bacterial pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping the training dataset and demonstrating the power of our GAN approach across different medical imaging contexts. Our method aims to streamline data collection and labeling processes while addressing privacy concerns associated with patient data. We demonstrate the effectiveness of synthetic data in facilitating the development and evaluation of machine learning algorithms, particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic data augmentation in improving disease classification accuracy across diverse pathological conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI classification task shows highest accuracy at 85.9%. Our findings underscore the promising role of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other respiratory conditions, and brain pathologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助pupu采纳,获得10
刚刚
刚刚
嗯呢嗯呢应助August采纳,获得200
1秒前
2秒前
脑洞疼应助磕学少女采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
乐乐应助小鱼儿采纳,获得10
5秒前
5秒前
星辰大海应助如沐风采纳,获得10
5秒前
feifei发布了新的文献求助10
5秒前
充电宝应助迅猛2002采纳,获得10
6秒前
SciGPT应助勤劳的音响采纳,获得10
7秒前
秀丽雁芙发布了新的文献求助10
8秒前
hopen完成签到,获得积分10
8秒前
大盆发布了新的文献求助10
9秒前
9秒前
852应助大方小苏采纳,获得10
9秒前
10秒前
无用的老董西完成签到 ,获得积分10
10秒前
香香发布了新的文献求助10
10秒前
神勇中道完成签到,获得积分10
11秒前
大个应助liuying采纳,获得10
11秒前
11秒前
脑洞疼应助TT2022采纳,获得10
12秒前
英俊的铭应助天天采纳,获得10
12秒前
erhao发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
欢喜烧鹅完成签到,获得积分10
14秒前
111完成签到,获得积分10
14秒前
14秒前
15秒前
爆米花应助GOODYUE采纳,获得10
15秒前
隐形不凡完成签到,获得积分10
15秒前
15秒前
迅猛2002完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
领导范儿应助yefeng采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959120
求助须知:如何正确求助?哪些是违规求助? 4219993
关于积分的说明 13139275
捐赠科研通 4003365
什么是DOI,文献DOI怎么找? 2190793
邀请新用户注册赠送积分活动 1205401
关于科研通互助平台的介绍 1116823