孟德尔随机化
咖啡因
药品
随机化
孟德尔遗传
遗传学
生物
医学
药理学
基因型
生物信息学
基因
内科学
遗传变异
临床试验
作者
Benjamin Woolf,Héléne T. Cronjé,Loukas Zagkos,Susanna C. Larsson,Dipender Gill,Stephen Burgess
摘要
Abstract Mendelian randomization is an epidemiological technique that can explore the potential effect of perturbing a pharmacological target. Plasma caffeine levels can be used as a biomarker to measure the pharmacological effects of caffeine. Alternatively, this can be assessed using a behavioral proxy, such as average number of caffeinated drinks consumed per day. Either variable can be used as the exposure in a Mendelian randomization investigation, and to select which genetic variants to use as instrumental variables. Another possibility is to choose variants in gene regions with known biological relevance to caffeine level regulation. These choices affect the causal question that is being addressed by the analysis, and the validity of the analysis assumptions. Further, even when using the same genetic variants, the sign of Mendelian randomization estimates (positive or negative) can change depending on the choice of exposure. Some genetic variants that decrease caffeine metabolism associate with higher levels of plasma caffeine, but lower levels of caffeine consumption, as individuals with these variants require less caffeine consumption for the same physiological effect. We explore Mendelian randomization estimates for the effect of caffeine on body mass index, and discuss implications for variant and exposure choice in drug target Mendelian randomization investigations.
科研通智能强力驱动
Strongly Powered by AbleSci AI