Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning

高光谱成像 遥感 冬小麦 人工智能 深度学习 环境科学 计算机科学 农学 地理 生物
作者
Jibo Yue,Guijun Yang,Changchun Li,Yang Liu,Jian Wang,Wei Guo,Xinming Ma,Qinglin Niu,Hongbo Qiao,Haikuan Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109026-109026 被引量:6
标识
DOI:10.1016/j.compag.2024.109026
摘要

Accurate estimation of crop leaf and canopy biochemical traits, such as leaf dry matter content (Cm), leaf equivalent water thickness (Cw), leaf area index (LAI), dry leaf biomass (DLB), leaf total water content (LW), and fresh leaf biomass (FLB), is essential for monitoring crop growth accurately. The vegetation spectral feature technique combined with statistical regression methods is widely employed for remote sensing crop biochemical traits mapping. However, the crop canopy spectral reflectance is influenced by various crop biochemical traits and uncertainties in geometric changes of light and soil background effects. Consequently, the remote-sensing estimation of crop biochemical traits is limited. A potential solution involves training a deep learning model to understand the physical relationship between crop biochemical traits and canopy spectral reflectance based on a physical radiative transfer model (RTM). The primary focus of this study is to propose a winter-wheat leaf and canopy biochemical traits analysis and mapping method based on hyperspectral remote sensing, utilizing a deep learning network for leaf area index and leaf biochemical traits deep learning network (LabTNet). This study consists of four main tasks: (1) Field-based measurements of winter-wheat spectra and biochemical traits were conducted in two growing seasons. A PROSAIL RTM was also employed to generate a simulated dataset representing comprehensive and complex winter-wheat field conditions. (2) The LabTNet deep learning model was pre-trained using the simulated spectra dataset to acquire knowledge of the physical relationship between crop biochemical traits and canopy spectral reflectance derived from the RTM. Subsequently, the model was re-trained using the field-based spectra dataset from two growing seasons, employing a transfer learning technique. (3) An analysis was conducted to assess the performance of LabTNet against traditional statistical regression methods in estimating crop leaf and canopy biochemical traits. The study used the gradient-weighted class activation mapping (Grad-CAM) technique to analyze the attention regions of input spectra (454:8:950 nm, 960:10:1300 nm, 1450:10:1750 nm, 2000:10:2350 nm) by different convolutional neural network layers in LabTNet, aiming to enhance the interpretability of deep learning models. (4) Winter-wheat leaf and canopy biochemical traits (Cw, Cm, LAI, DLB, LW, and FLB) were mapped using the LabTNet deep learning model. Our research has the following conclusions: (1) Combining the RTM and deep learning techniques yields higher winter-wheat biochemical trait estimates than traditional statistical regression methods. (2) Different LabTNet deep learning model layers focus on distinct areas of canopy reflectance, corresponding to the sensitive regions for various winter-wheat biochemical traits. (3) LabTNet demonstrates similar winter-wheat leaf and canopy biochemical traits estimation performance using visible and near-infrared (VNIR) reflectance data and full-spectral (FS) range hyperspectral reflectance as inputs (Cw: R2 = 0.603–0.653, RMSE = 0.0015–0.0015 cm; Cm: R2 = 0.511–0.560, RMSE = 0.0006–0.0007 g/m2; LAI: R2 = 0.773–0.793, RMSE = 0.65–0.66 m2/m2; LW: R2 = 0.842–0.847, RMSE = 67.93–70.73 g/m2; DLB: R2 = 0.747–0.762, RMSE = 21.10–21.89 g/m2; FLB: R2 = 0.831–0.840, RMSE = 86.26–90.30 g/m2). The combined use of UAV hyperspectral remote sensing and the LabTNet model proves effective in providing high-performance winter-wheat leaf and canopy biochemical trait maps, offering valuable insights for agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon完成签到,获得积分10
刚刚
ding应助清脆的念柏采纳,获得10
2秒前
2秒前
wefs发布了新的文献求助10
2秒前
我是老大应助开口笑采纳,获得10
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
小熊梅尼耶给小熊梅尼耶的求助进行了留言
4秒前
4秒前
xin_qin_Wei完成签到 ,获得积分20
4秒前
666JACS完成签到,获得积分10
4秒前
爆米花应助自由灵安采纳,获得10
4秒前
5秒前
微笑亿先发布了新的文献求助10
6秒前
潇洒的如松完成签到,获得积分10
6秒前
浮游应助林朝阳采纳,获得10
6秒前
6秒前
陈某某发布了新的文献求助10
7秒前
ZY完成签到,获得积分10
8秒前
任性的傲柏完成签到,获得积分10
8秒前
9秒前
Zhang完成签到,获得积分10
10秒前
gzf完成签到 ,获得积分10
10秒前
10秒前
zzzzzzzzzj发布了新的文献求助10
10秒前
10秒前
研友_Z1eqJZ完成签到,获得积分10
12秒前
科研通AI6应助Rex采纳,获得20
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
pengyuzhao发布了新的文献求助30
13秒前
14秒前
14秒前
wefs完成签到,获得积分10
14秒前
搜集达人应助Stella采纳,获得50
14秒前
15秒前
极客晨风发布了新的文献求助10
15秒前
15秒前
木木发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244