Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning

高光谱成像 遥感 冬小麦 人工智能 深度学习 环境科学 计算机科学 农学 地理 生物
作者
Jibo Yue,Guijun Yang,Changchun Li,Yang Liu,Jian Wang,Wei Guo,Xinming Ma,Qinglin Niu,Hongbo Qiao,Haikuan Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109026-109026 被引量:2
标识
DOI:10.1016/j.compag.2024.109026
摘要

Accurate estimation of crop leaf and canopy biochemical traits, such as leaf dry matter content (Cm), leaf equivalent water thickness (Cw), leaf area index (LAI), dry leaf biomass (DLB), leaf total water content (LW), and fresh leaf biomass (FLB), is essential for monitoring crop growth accurately. The vegetation spectral feature technique combined with statistical regression methods is widely employed for remote sensing crop biochemical traits mapping. However, the crop canopy spectral reflectance is influenced by various crop biochemical traits and uncertainties in geometric changes of light and soil background effects. Consequently, the remote-sensing estimation of crop biochemical traits is limited. A potential solution involves training a deep learning model to understand the physical relationship between crop biochemical traits and canopy spectral reflectance based on a physical radiative transfer model (RTM). The primary focus of this study is to propose a winter-wheat leaf and canopy biochemical traits analysis and mapping method based on hyperspectral remote sensing, utilizing a deep learning network for leaf area index and leaf biochemical traits deep learning network (LabTNet). This study consists of four main tasks: (1) Field-based measurements of winter-wheat spectra and biochemical traits were conducted in two growing seasons. A PROSAIL RTM was also employed to generate a simulated dataset representing comprehensive and complex winter-wheat field conditions. (2) The LabTNet deep learning model was pre-trained using the simulated spectra dataset to acquire knowledge of the physical relationship between crop biochemical traits and canopy spectral reflectance derived from the RTM. Subsequently, the model was re-trained using the field-based spectra dataset from two growing seasons, employing a transfer learning technique. (3) An analysis was conducted to assess the performance of LabTNet against traditional statistical regression methods in estimating crop leaf and canopy biochemical traits. The study used the gradient-weighted class activation mapping (Grad-CAM) technique to analyze the attention regions of input spectra (454:8:950 nm, 960:10:1300 nm, 1450:10:1750 nm, 2000:10:2350 nm) by different convolutional neural network layers in LabTNet, aiming to enhance the interpretability of deep learning models. (4) Winter-wheat leaf and canopy biochemical traits (Cw, Cm, LAI, DLB, LW, and FLB) were mapped using the LabTNet deep learning model. Our research has the following conclusions: (1) Combining the RTM and deep learning techniques yields higher winter-wheat biochemical trait estimates than traditional statistical regression methods. (2) Different LabTNet deep learning model layers focus on distinct areas of canopy reflectance, corresponding to the sensitive regions for various winter-wheat biochemical traits. (3) LabTNet demonstrates similar winter-wheat leaf and canopy biochemical traits estimation performance using visible and near-infrared (VNIR) reflectance data and full-spectral (FS) range hyperspectral reflectance as inputs (Cw: R2 = 0.603–0.653, RMSE = 0.0015–0.0015 cm; Cm: R2 = 0.511–0.560, RMSE = 0.0006–0.0007 g/m2; LAI: R2 = 0.773–0.793, RMSE = 0.65–0.66 m2/m2; LW: R2 = 0.842–0.847, RMSE = 67.93–70.73 g/m2; DLB: R2 = 0.747–0.762, RMSE = 21.10–21.89 g/m2; FLB: R2 = 0.831–0.840, RMSE = 86.26–90.30 g/m2). The combined use of UAV hyperspectral remote sensing and the LabTNet model proves effective in providing high-performance winter-wheat leaf and canopy biochemical trait maps, offering valuable insights for agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Jiangnj发布了新的文献求助30
1秒前
samantha完成签到,获得积分10
2秒前
2秒前
俎树同完成签到 ,获得积分10
2秒前
Natsu完成签到,获得积分10
2秒前
马保国123发布了新的文献求助10
3秒前
丘比特应助无限的隶采纳,获得10
3秒前
在云里爱与歌完成签到,获得积分10
4秒前
迟大猫应助研究生采纳,获得10
4秒前
可行完成签到,获得积分10
4秒前
4秒前
yuhui完成签到,获得积分10
4秒前
5秒前
pi发布了新的文献求助10
5秒前
5秒前
小蘑菇应助科研菜鸟采纳,获得10
6秒前
Owen应助晚风采纳,获得10
6秒前
小二郎应助Jiangnj采纳,获得10
6秒前
微信研友完成签到,获得积分10
6秒前
科研通AI5应助陈杰采纳,获得10
6秒前
7秒前
Jasper应助含糊采纳,获得10
7秒前
dfggg发布了新的文献求助10
7秒前
跑在颖发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
yatou5651发布了新的文献求助10
7秒前
8秒前
乐乐应助koi采纳,获得10
8秒前
asdfqwer发布了新的文献求助10
8秒前
8秒前
chemhub完成签到,获得积分10
8秒前
杜杜完成签到,获得积分10
9秒前
周小慧发布了新的文献求助10
9秒前
9秒前
自由寻菱完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762