Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning

高光谱成像 遥感 冬小麦 人工智能 深度学习 环境科学 计算机科学 农学 地理 生物
作者
Jibo Yue,Guijun Yang,Changchun Li,Yang Liu,Jian Wang,Wei Guo,Xinming Ma,Qinglin Niu,Hongbo Qiao,Haikuan Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109026-109026 被引量:2
标识
DOI:10.1016/j.compag.2024.109026
摘要

Accurate estimation of crop leaf and canopy biochemical traits, such as leaf dry matter content (Cm), leaf equivalent water thickness (Cw), leaf area index (LAI), dry leaf biomass (DLB), leaf total water content (LW), and fresh leaf biomass (FLB), is essential for monitoring crop growth accurately. The vegetation spectral feature technique combined with statistical regression methods is widely employed for remote sensing crop biochemical traits mapping. However, the crop canopy spectral reflectance is influenced by various crop biochemical traits and uncertainties in geometric changes of light and soil background effects. Consequently, the remote-sensing estimation of crop biochemical traits is limited. A potential solution involves training a deep learning model to understand the physical relationship between crop biochemical traits and canopy spectral reflectance based on a physical radiative transfer model (RTM). The primary focus of this study is to propose a winter-wheat leaf and canopy biochemical traits analysis and mapping method based on hyperspectral remote sensing, utilizing a deep learning network for leaf area index and leaf biochemical traits deep learning network (LabTNet). This study consists of four main tasks: (1) Field-based measurements of winter-wheat spectra and biochemical traits were conducted in two growing seasons. A PROSAIL RTM was also employed to generate a simulated dataset representing comprehensive and complex winter-wheat field conditions. (2) The LabTNet deep learning model was pre-trained using the simulated spectra dataset to acquire knowledge of the physical relationship between crop biochemical traits and canopy spectral reflectance derived from the RTM. Subsequently, the model was re-trained using the field-based spectra dataset from two growing seasons, employing a transfer learning technique. (3) An analysis was conducted to assess the performance of LabTNet against traditional statistical regression methods in estimating crop leaf and canopy biochemical traits. The study used the gradient-weighted class activation mapping (Grad-CAM) technique to analyze the attention regions of input spectra (454:8:950 nm, 960:10:1300 nm, 1450:10:1750 nm, 2000:10:2350 nm) by different convolutional neural network layers in LabTNet, aiming to enhance the interpretability of deep learning models. (4) Winter-wheat leaf and canopy biochemical traits (Cw, Cm, LAI, DLB, LW, and FLB) were mapped using the LabTNet deep learning model. Our research has the following conclusions: (1) Combining the RTM and deep learning techniques yields higher winter-wheat biochemical trait estimates than traditional statistical regression methods. (2) Different LabTNet deep learning model layers focus on distinct areas of canopy reflectance, corresponding to the sensitive regions for various winter-wheat biochemical traits. (3) LabTNet demonstrates similar winter-wheat leaf and canopy biochemical traits estimation performance using visible and near-infrared (VNIR) reflectance data and full-spectral (FS) range hyperspectral reflectance as inputs (Cw: R2 = 0.603–0.653, RMSE = 0.0015–0.0015 cm; Cm: R2 = 0.511–0.560, RMSE = 0.0006–0.0007 g/m2; LAI: R2 = 0.773–0.793, RMSE = 0.65–0.66 m2/m2; LW: R2 = 0.842–0.847, RMSE = 67.93–70.73 g/m2; DLB: R2 = 0.747–0.762, RMSE = 21.10–21.89 g/m2; FLB: R2 = 0.831–0.840, RMSE = 86.26–90.30 g/m2). The combined use of UAV hyperspectral remote sensing and the LabTNet model proves effective in providing high-performance winter-wheat leaf and canopy biochemical trait maps, offering valuable insights for agricultural management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶孤城完成签到,获得积分10
刚刚
Fiona发布了新的文献求助10
1秒前
TANG发布了新的文献求助10
1秒前
2秒前
3秒前
烟花应助科研小废物采纳,获得10
3秒前
CodeCraft应助竹子采纳,获得10
4秒前
chodiernal完成签到,获得积分10
5秒前
贪玩亦云完成签到,获得积分10
5秒前
SciGPT应助drughunter009采纳,获得10
6秒前
6秒前
Dd发布了新的文献求助10
7秒前
7秒前
Seameng完成签到 ,获得积分10
7秒前
xixi完成签到,获得积分10
7秒前
8秒前
梁33发布了新的文献求助10
9秒前
9秒前
qi发布了新的文献求助10
11秒前
烟花应助王大雨采纳,获得10
12秒前
kunkun完成签到 ,获得积分20
14秒前
希望天下0贩的0应助Fiona采纳,获得10
14秒前
iZ1024给爱学习的YY的求助进行了留言
15秒前
Dd完成签到,获得积分20
16秒前
19秒前
19秒前
李爱国应助科研小废物采纳,获得10
21秒前
21秒前
23秒前
Andorchid完成签到,获得积分10
23秒前
whisper发布了新的文献求助10
24秒前
24秒前
一亿发布了新的文献求助10
25秒前
qi完成签到,获得积分10
25秒前
小赵同学完成签到,获得积分20
26秒前
26秒前
27秒前
竹子发布了新的文献求助10
27秒前
28秒前
望轲完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780922
捐赠科研通 2443313
什么是DOI,文献DOI怎么找? 1299106
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905