A Novel Fault Diagnosis Framework for Industrial Production Processes Based on Causal Network Inference

推论 计算机科学 生产(经济) 断层(地质) 因果推理 人工智能 计量经济学 数学 经济 地质学 宏观经济学 地震学
作者
Jiaxin Zhang,Gade Pandu Rangaiah,Lichun Dong,S. Lakshminarayanan
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (21): 9471-9488
标识
DOI:10.1021/acs.iecr.3c04275
摘要

With the advent of Industry 4.0, the introduction of data-driven approaches into industrial processes for fault diagnosis has gained substantial attention due to their significant advantage that they mainly rely on the information on process data instead of a priori knowledge. However, the statistically based data-driven methods have difficulty eliminating the "smearing effect" between variables, which affects their effectiveness and interpretability for fault diagnosis, while the previous studies on the causal-based fault diagnosis methods are seriously insufficient. In this study, a novel data-driven fault diagnosis framework based on causal network inference was developed, in which the correlations between variables are explored by employing the partial correlation network (PC-NET) method and the causal propagation direction are determined by a newly developed partial conditional Granger causality (PCGC) method based on the transfer entropy. Subsequently, the occurrences of faults are detected by using a causal-based multivariable sensitivity enhancing transformation (MSET) approach. Finally, a causality-attributing reconstruction-based contribution (RBC) method is developed to isolate and identify the fault variables and to classify the fault grade for taking remedial measures. The effectiveness of the proposed fault diagnosis framework is verified by its application in the actuator system of the industrial sugar production process, and the results demonstrate that the proposed fault diagnosis framework can not only eliminate the smearing effects but also accurately identify fault variables and their contribution rates, exhibiting better interpretability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxuwei完成签到,获得积分10
刚刚
shuaiBsen完成签到,获得积分10
1秒前
个性的紫菜应助北辰采纳,获得10
2秒前
小小施完成签到,获得积分20
2秒前
Geng完成签到 ,获得积分10
3秒前
脑洞疼应助yxx采纳,获得10
3秒前
3秒前
劲秉应助我爱化学采纳,获得200
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
zzz完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
生动芝麻完成签到,获得积分10
8秒前
9秒前
Lucas应助Melodie采纳,获得10
9秒前
上官若男应助xiaoxiao采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
直率海豚发布了新的文献求助10
11秒前
锦诗发布了新的文献求助10
13秒前
水云身完成签到,获得积分10
13秒前
13秒前
万能图书馆应助彩虹糖采纳,获得10
14秒前
14秒前
所所应助现代雁桃采纳,获得10
15秒前
15秒前
HAO发布了新的文献求助30
16秒前
16秒前
单薄怜寒完成签到 ,获得积分10
16秒前
科研小民工应助大力盼秋采纳,获得30
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
科研通AI5应助探子安采纳,获得10
18秒前
YTT发布了新的文献求助10
18秒前
19秒前
19秒前
顾矜应助july九月采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101