Efficient Xylene Isomer Separation: Accelerated Screening with Active Learning and Molecular Simulation

分离(统计) 化学 色谱法 计算机科学 机器学习
作者
Mohd Aqib,Varad Daoo,Jayant K. Singh
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (11): 9381-9394 被引量:2
标识
DOI:10.1021/acs.energyfuels.4c00166
摘要

Separating xylene isomers is vital in the petrochemical industry, yet it poses a considerable challenge due to their proximate boiling points, mandating selective adsorbents. This work utilizes active learning (AL) coupled with molecular simulations to rapidly screen 324,426 hypothetical metal–organic frameworks (hMOFs) to identify optimal materials for preferential para-xylene (pX) adsorption. To begin, a diverse subset, representative of the entire hMOF set, was curated using structural and chemical descriptors and evaluated through multiple screening methodologies. This comparative analysis highlighted the superior efficiency of AL in targeted screening processes, requiring on an average only 500 multicomponent Grand Canonical Monte Carlo simulations to identify the most pX-selective framework, encompassing 50.5% of the top 100 candidates. With an equivalent evaluation budget, both machine learning (ML) and evolutionary algorithms demonstrate an inadequate performance. While the former consistently fails to identify top performers, the latter continuously identifies significantly inferior materials. AL, on the other hand, surpasses rival approaches by effectively balancing exploration and exploitation, guiding simulations toward regions associated with high performance. Furthermore, we report the impact of different surrogate models, acquisition functions, and batch acquisition strategies on the convergence of our AL model. We found that the Gaussian process surrogate model coupled with expected improvement (EI) acquisition function and the Kriging-Believer upper bound (KBUB) acquisition strategy acquires the highest pX-selective MOF in just 86 acquisitions. Examining the top hMOF candidates revealed a complex correlation between the pX selectivity and structural features of hMOFs. In particular, the pcu topology, along with a pore size ranging from 5 to 6 Å, emerged as the dominant characteristic of top hMOFs. Furthermore, pressure-dependent simulations revealed optimal pressure maximizing pX uptake and selectivity. This computational workflow, integrating AL and molecular simulations, shows promise in accelerating data-driven material innovation for separation applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到,获得积分10
刚刚
lzl完成签到,获得积分20
1秒前
壮观的沂完成签到,获得积分20
1秒前
2秒前
3秒前
4秒前
4秒前
老鼠耗子完成签到,获得积分10
5秒前
6秒前
慕青应助zhurui采纳,获得10
7秒前
一区作者发布了新的文献求助10
7秒前
leec应助清脆不乐采纳,获得10
8秒前
田静然发布了新的文献求助10
10秒前
Mtx3098520564完成签到 ,获得积分10
10秒前
踏实玉米完成签到,获得积分10
12秒前
BOB完成签到,获得积分10
12秒前
故意的雨灵完成签到,获得积分10
13秒前
科目三应助壮观的沂采纳,获得10
15秒前
CodeCraft应助狸花小喵采纳,获得10
16秒前
科研通AI2S应助dingjianqiang采纳,获得10
17秒前
CodeCraft应助通子石大便采纳,获得10
18秒前
完美世界应助MoXian采纳,获得10
18秒前
酷波er应助18R13采纳,获得10
19秒前
傲娇的新竹完成签到,获得积分10
20秒前
英姑应助冷雨采纳,获得10
21秒前
21秒前
lalanlang完成签到,获得积分10
21秒前
21秒前
珂研完成签到 ,获得积分10
23秒前
浮生发布了新的文献求助100
23秒前
24秒前
25秒前
zhurui发布了新的文献求助10
25秒前
共享精神应助郑思雨采纳,获得10
25秒前
NW18完成签到,获得积分10
27秒前
Akim应助北偶采纳,获得10
27秒前
隐形的烧鹅完成签到,获得积分20
27秒前
天天快乐应助xin采纳,获得30
28秒前
小天发布了新的文献求助10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948286
关于积分的说明 8539762
捐赠科研通 2624145
什么是DOI,文献DOI怎么找? 1435889
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651654