Efficiently reconstructing high-quality details of 3D digital rocks with super-resolution Transformer

变压器 超分辨率 质量(理念) 高分辨率 计算机科学 工艺工程 工程类 地质学 人工智能 电气工程 遥感 物理 电压 量子力学 图像(数学)
作者
Zhihao Xing,Jun Yao,Lei Liu,Hai Sun
出处
期刊:Energy [Elsevier]
卷期号:300: 131499-131499 被引量:7
标识
DOI:10.1016/j.energy.2024.131499
摘要

Accurate pore-scale modeling demands high-quality digital rock images, which should possess a broad imaging field of view (FOV) and high resolution to characterize multi-scale rock components. However, achieving both conditions simultaneously is challenging due to hardware constraints. Super-resolution techniques can mitigate this issue by reconstructing high-resolution details from low-resolution images captured with a wide FOV. To reconstruct high-quality 3D digital rocks, we propose a novel Efficient Attention Super-Resolution Transformer (EAST) model. It integrates self-attention and channel attention mechanisms and undergoes structural optimization. Evaluation demonstrates that EAST achieves superior reconstruction quality with a 1.85× speedup while reducing parameters by 78% over the advanced model. Additionally, to tailor to the characteristics of digital rocks and the constrained dataset, we employ a hybrid loss function along with two data augmentation techniques. Visualizations reveal that EAST can resist noise and blur interference, highlighting valuable features such as pore edges and textures. Ultimately, we introduce an approach based on self-supervised fine-tuning to enhance the model robustness. Direct flow simulation verifies that the reconstructed results closely align with high-resolution images in terms of physical accuracy. EAST reduces the relative error of the absolute permeability by 18.5% and 33% over the Tricubic method on two external samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高行云发布了新的文献求助10
2秒前
2秒前
owllll应助Inspiring采纳,获得10
2秒前
3秒前
情怀应助army77采纳,获得10
3秒前
内向宛凝发布了新的文献求助10
3秒前
3秒前
阿狸发布了新的文献求助10
4秒前
KSDalton完成签到,获得积分10
4秒前
Pan完成签到 ,获得积分10
4秒前
科研通AI6应助AA采纳,获得10
5秒前
Jasper应助bububusbu采纳,获得10
5秒前
万能图书馆应助等风等你采纳,获得10
5秒前
852应助辛欣采纳,获得10
5秒前
Werido完成签到 ,获得积分10
6秒前
7秒前
李健的小迷弟应助行者采纳,获得10
7秒前
Linkingrains发布了新的文献求助10
8秒前
喻修杰发布了新的文献求助10
8秒前
10秒前
10秒前
12秒前
captainHc发布了新的文献求助10
12秒前
12秒前
Linkingrains完成签到,获得积分20
13秒前
kiki发布了新的文献求助10
13秒前
喻修杰完成签到,获得积分10
14秒前
14秒前
赘婿应助小小采纳,获得10
14秒前
Passer发布了新的文献求助10
15秒前
良医完成签到 ,获得积分10
15秒前
wanci应助Ward爱吃酥鱼采纳,获得10
15秒前
犬狗狗发布了新的文献求助10
16秒前
Jiayou Zhang发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
隐形曼青应助灵巧的含海采纳,获得10
17秒前
17秒前
18秒前
xxy完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480809
求助须知:如何正确求助?哪些是违规求助? 4581983
关于积分的说明 14382905
捐赠科研通 4510577
什么是DOI,文献DOI怎么找? 2471918
邀请新用户注册赠送积分活动 1458281
关于科研通互助平台的介绍 1431940