Efficiently reconstructing high-quality details of 3D digital rocks with super-resolution Transformer

变压器 超分辨率 质量(理念) 高分辨率 计算机科学 工艺工程 工程类 地质学 人工智能 电气工程 遥感 物理 电压 量子力学 图像(数学)
作者
Zhihao Xing,Jun Yao,Lei Liu,Hai Sun
出处
期刊:Energy [Elsevier]
卷期号:300: 131499-131499 被引量:2
标识
DOI:10.1016/j.energy.2024.131499
摘要

Accurate pore-scale modeling demands high-quality digital rock images, which should possess a broad imaging field of view (FOV) and high resolution to characterize multi-scale rock components. However, achieving both conditions simultaneously is challenging due to hardware constraints. Super-resolution techniques can mitigate this issue by reconstructing high-resolution details from low-resolution images captured with a wide FOV. To reconstruct high-quality 3D digital rocks, we propose a novel Efficient Attention Super-Resolution Transformer (EAST) model. It integrates self-attention and channel attention mechanisms and undergoes structural optimization. Evaluation demonstrates that EAST achieves superior reconstruction quality with a 1.85× speedup while reducing parameters by 78% over the advanced model. Additionally, to tailor to the characteristics of digital rocks and the constrained dataset, we employ a hybrid loss function along with two data augmentation techniques. Visualizations reveal that EAST can resist noise and blur interference, highlighting valuable features such as pore edges and textures. Ultimately, we introduce an approach based on self-supervised fine-tuning to enhance the model robustness. Direct flow simulation verifies that the reconstructed results closely align with high-resolution images in terms of physical accuracy. EAST reduces the relative error of the absolute permeability by 18.5% and 33% over the Tricubic method on two external samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助mammoth采纳,获得20
刚刚
熊boy发布了新的文献求助10
刚刚
天真思雁发布了新的文献求助10
刚刚
1秒前
情怀应助蔡蔡不菜菜采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
2秒前
CipherSage应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
ChangSZ应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
小飞七应助MADKAI采纳,获得10
2秒前
Akim应助MADKAI采纳,获得20
2秒前
科研通AI5应助MADKAI采纳,获得10
2秒前
充电宝应助MADKAI采纳,获得10
2秒前
buno应助MADKAI采纳,获得10
2秒前
2秒前
小唐完成签到 ,获得积分0
4秒前
思源应助年轻的咖啡豆采纳,获得10
4秒前
6秒前
科研通AI5应助junc采纳,获得20
6秒前
绿洲完成签到,获得积分10
7秒前
7秒前
yf_zhu发布了新的文献求助10
7秒前
正直亦旋发布了新的文献求助10
7秒前
8秒前
华仔应助招财不肥采纳,获得10
8秒前
健康的梦曼完成签到 ,获得积分10
8秒前
最最最发布了新的文献求助10
8秒前
科研是什么鬼完成签到,获得积分10
10秒前
10秒前
11秒前
欢喜素阴完成签到 ,获得积分10
12秒前
yirenli完成签到,获得积分10
12秒前
希望天下0贩的0应助DAYTOY采纳,获得10
12秒前
狮子座完成签到,获得积分10
12秒前
爆米花应助润润轩轩采纳,获得10
12秒前
14秒前
熊boy完成签到,获得积分10
14秒前
1233完成签到,获得积分10
14秒前
Chang发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762