催化作用
吸附
化学
氨
氮气
分子
产量(工程)
氨生产
多孔性
无机化学
金属
惰性
化学工程
氢
金属有机骨架
介质阻挡放电
材料科学
物理化学
有机化学
工程类
电极
冶金
作者
Shoujun Guo,Jiangwei Zhang,Guilan Fan,Ao Shen,Xiaosong Wang,Yan Guo,Junfang Ding,Chenhui Han,Xiaojun Gu,Limin Wu
标识
DOI:10.1002/anie.202409698
摘要
Abstract While the ambient N 2 reduction to ammonia (NH 3 ) using H 2 O as hydrogen source (2N 2 +6H 2 O=4NH 3 +3O 2 ) is known as a promising alternative to the Haber–Bosch process, the high bond energy of N≡N bond leads to the extremely low NH 3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low‐temperature dielectric barrier discharge plasma to activate inert N 2 molecules into the excited nitrogen species, which can efficiently react with the confined and concentrated H 2 O molecules in porous metal–organic framework (MOF) reactors with V 3+ , Cr 3+ , Mn 3+ , Fe 3+ , Co 2+ , Ni 2+ and Cu 2+ ions. Specially, the Fe‐based catalyst MIL‐100(Fe) causes a superhigh NH 3 yield of 22.4 mmol g −1 h −1 . The investigation of catalytic performance and systematic characterizations of MIL‐100(Fe) during the plasma‐driven catalytic reaction unveils that the in situ generated defective Fe−O clusters are the highly active sites and NH 3 molecules indeed form inside the MIL‐100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL‐100(Fe) has the lowest energy barrier for the rate‐limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.
科研通智能强力驱动
Strongly Powered by AbleSci AI