Analyzing the Robustness of Vision & Language Models

计算机科学 过度拟合 人工智能 变压器 机器翻译 稳健性(进化) 直觉 模式 自然语言处理 机器学习 人工神经网络 心理学 认知科学 量子力学 基因 物理 生物化学 社会学 电压 化学 社会科学
作者
Alexander Shirnin,Nikita Andreev,Sofia Potapova,Ekaterina Artemova
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2751-2763
标识
DOI:10.1109/taslp.2024.3399061
摘要

We present an approach to evaluate the robustness of pre-trained vision and language (V&L) models to noise in input data. Given a source image/text, we perturb it using standard computer vision (CV) / natural language processing (NLP) techniques and feed it to a V&L model. To track performance changes, we explore the problem of visual questions answering (VQA). Overall, we utilize 5 image and 9 text perturbation techniques and probe three Transformer-based V&L models followed by a broad analysis of their behavior and a detailed comparison. We discovered several key findings regarding the performance of the models in relation to the impact of various perturbations. These discrepancies in performance can be attributed to differences in their architectures and learning objectives. Last, but not least, we perform an empirical study to assess whether the attention mechanism of V&L Transformers learns to align modalities. We hypothesize, that attention weights for related objects and words, should be on average higher than for random object/word pairs. However, our study shows that, unlike is believed for machine translation models, V&L models do not learn alignment at all or exhibit less evidence to do so. This may support the intuition that V&L Transformers overfit to either of the modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
及禾完成签到,获得积分10
1秒前
赘婿应助ninomi采纳,获得10
2秒前
MingqingFang发布了新的文献求助10
2秒前
心想柿橙完成签到,获得积分10
5秒前
l37u2n发布了新的文献求助10
6秒前
Stanfuny完成签到,获得积分10
6秒前
Akim应助Mcling采纳,获得10
7秒前
跳跃的飞机完成签到,获得积分10
8秒前
ZQ完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
乐乐应助Sou采纳,获得10
11秒前
ninomi完成签到,获得积分20
11秒前
田様应助科研通管家采纳,获得10
11秒前
cureall应助科研通管家采纳,获得10
11秒前
wu8577应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
Gauss应助Merlin采纳,获得200
14秒前
无花果应助秦摆烂采纳,获得30
15秒前
南海神尼完成签到,获得积分10
17秒前
bkagyin应助MingqingFang采纳,获得10
18秒前
个性铅笔关注了科研通微信公众号
18秒前
梨儿发布了新的文献求助10
18秒前
18秒前
21秒前
21秒前
好好好完成签到 ,获得积分10
21秒前
HeAuBook应助分析采纳,获得20
22秒前
zmj发布了新的文献求助10
24秒前
24秒前
Sou发布了新的文献求助10
25秒前
CodeCraft应助雨曦采纳,获得10
25秒前
26秒前
27秒前
善学以致用应助JamesTYD采纳,获得10
27秒前
28秒前
29秒前
yydragen应助甜美的成败采纳,获得50
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11135009
捐赠科研通 3239663
什么是DOI,文献DOI怎么找? 1790326
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150