清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 古生物学 吸收(声学) 环境卫生 声学
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴静完成签到 ,获得积分10
6秒前
fanssw完成签到 ,获得积分0
12秒前
丸子完成签到 ,获得积分10
21秒前
lod完成签到,获得积分10
22秒前
yangzai完成签到 ,获得积分10
30秒前
懒得起名字完成签到 ,获得积分10
45秒前
李大胖胖完成签到 ,获得积分10
46秒前
钮祜禄萱完成签到 ,获得积分10
50秒前
yuntong完成签到 ,获得积分0
50秒前
56秒前
GLv完成签到,获得积分10
1分钟前
1分钟前
行云流水完成签到 ,获得积分10
1分钟前
流年发布了新的文献求助10
1分钟前
努力努力再努力完成签到,获得积分10
1分钟前
HanluMa完成签到 ,获得积分10
1分钟前
1分钟前
Q哈哈哈发布了新的文献求助30
1分钟前
Q哈哈哈完成签到,获得积分10
2分钟前
杨三多完成签到,获得积分10
2分钟前
zzhui完成签到,获得积分10
2分钟前
2分钟前
2分钟前
wayne完成签到 ,获得积分10
2分钟前
chcmy完成签到 ,获得积分0
3分钟前
JD完成签到 ,获得积分10
3分钟前
专注的映之完成签到 ,获得积分10
3分钟前
江洋大盗完成签到,获得积分10
3分钟前
慧慧34完成签到 ,获得积分10
3分钟前
小谢同学完成签到 ,获得积分10
3分钟前
MM完成签到 ,获得积分10
3分钟前
3分钟前
沉静盼易发布了新的文献求助10
4分钟前
67完成签到 ,获得积分10
4分钟前
charliechen完成签到 ,获得积分10
4分钟前
沉静盼易完成签到,获得积分10
4分钟前
陈A完成签到 ,获得积分10
4分钟前
龚瑶完成签到 ,获得积分10
4分钟前
回首不再是少年完成签到,获得积分0
4分钟前
务实鞅完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293423
求助须知:如何正确求助?哪些是违规求助? 4443559
关于积分的说明 13831350
捐赠科研通 4327305
什么是DOI,文献DOI怎么找? 2375385
邀请新用户注册赠送积分活动 1370685
关于科研通互助平台的介绍 1335525