Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 古生物学 吸收(声学) 环境卫生 声学
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
云海发布了新的文献求助10
刚刚
田様应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
HaonanZhang应助科研通管家采纳,获得10
1秒前
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
Yuna应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Allen0520完成签到,获得积分10
2秒前
Akim应助七秒鱼采纳,获得10
4秒前
5秒前
gq100520发布了新的文献求助10
7秒前
专注的怜容完成签到 ,获得积分20
9秒前
9秒前
jc哥发布了新的文献求助10
12秒前
田様应助luckypig采纳,获得10
12秒前
调皮剑鬼发布了新的文献求助10
12秒前
蒋蒋完成签到 ,获得积分10
13秒前
FRANKFANG完成签到,获得积分20
14秒前
慕青应助5433采纳,获得10
14秒前
搜集达人应助满意麦片采纳,获得10
15秒前
在水一方应助调皮剑鬼采纳,获得10
17秒前
yyanxuemin919发布了新的文献求助10
18秒前
Ava应助研究生小李采纳,获得10
22秒前
隐形曼青应助高风亮节采纳,获得10
24秒前
25秒前
小蘑菇应助zhoupeng采纳,获得20
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841