Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 古生物学 吸收(声学) 环境卫生 声学
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
深情安青应助nuannuan采纳,获得20
2秒前
呆萌冰绿完成签到,获得积分10
2秒前
李大园子完成签到 ,获得积分10
2秒前
2秒前
华枝春满完成签到,获得积分10
3秒前
wuqilong完成签到,获得积分10
4秒前
dreamlightzy应助qmd采纳,获得10
4秒前
NewMoon完成签到,获得积分10
4秒前
FashionBoy应助嘟嘟采纳,获得10
4秒前
洁净的127完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
2339822272发布了新的文献求助10
7秒前
星星完成签到,获得积分10
7秒前
幸运兔发布了新的文献求助10
8秒前
上官若男应助wqx采纳,获得10
8秒前
月亮邮递员完成签到,获得积分10
10秒前
222完成签到 ,获得积分10
10秒前
Likj完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
异氰酸正丙酯完成签到 ,获得积分10
12秒前
wsc发布了新的文献求助10
12秒前
幸运兔完成签到,获得积分10
13秒前
曾祥钰完成签到 ,获得积分10
14秒前
15秒前
15秒前
bkagyin应助XM采纳,获得10
15秒前
15秒前
芒果糯米球完成签到,获得积分10
17秒前
未来完成签到,获得积分10
19秒前
19秒前
nuonuo发布了新的文献求助10
19秒前
19秒前
橙子发布了新的文献求助30
19秒前
海洋发布了新的文献求助10
20秒前
万能图书馆应助黄123huang_采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333