已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 古生物学 吸收(声学) 环境卫生 声学
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Bioyanggu发布了新的文献求助10
2秒前
春日无尾熊完成签到 ,获得积分10
2秒前
咚咚发布了新的文献求助10
2秒前
kalcspin完成签到 ,获得积分10
3秒前
独特的易形完成签到 ,获得积分10
3秒前
乐乐应助沉默的倔驴采纳,获得10
3秒前
你好天空发布了新的文献求助10
3秒前
4秒前
问枫完成签到,获得积分10
4秒前
动听葵阴发布了新的文献求助20
5秒前
kk完成签到,获得积分10
6秒前
CipherSage应助读书的时候采纳,获得30
6秒前
7秒前
小智完成签到 ,获得积分10
8秒前
星辰大海应助奇遇里采纳,获得10
9秒前
Joceelyn完成签到 ,获得积分10
11秒前
细心怀亦完成签到 ,获得积分10
12秒前
12秒前
kk完成签到 ,获得积分10
12秒前
天堂鸟完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
18秒前
阳光的羊发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
21秒前
23秒前
23秒前
kk完成签到 ,获得积分10
23秒前
奥福发布了新的文献求助10
23秒前
zzh发布了新的文献求助10
24秒前
konosuba完成签到,获得积分0
25秒前
sun发布了新的文献求助10
25秒前
Lucas应助顺心的鲂采纳,获得10
27秒前
win完成签到 ,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746095
求助须知:如何正确求助?哪些是违规求助? 5430774
关于积分的说明 15354692
捐赠科研通 4885972
什么是DOI,文献DOI怎么找? 2626998
邀请新用户注册赠送积分活动 1575502
关于科研通互助平台的介绍 1532213