亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 声学 古生物学 环境卫生 吸收(声学)
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangmax完成签到,获得积分10
3秒前
orixero应助能干垣采纳,获得10
4秒前
Catlee完成签到,获得积分10
9秒前
11秒前
12秒前
苏绿秋发布了新的文献求助10
14秒前
8R60d8应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
22秒前
Smith.w应助科研通管家采纳,获得10
22秒前
22秒前
29秒前
46秒前
互助遵法尚德完成签到,获得积分0
52秒前
54秒前
卡琳完成签到 ,获得积分10
56秒前
林子发布了新的文献求助10
58秒前
张张张完成签到 ,获得积分10
1分钟前
能干垣完成签到,获得积分20
1分钟前
1分钟前
1分钟前
能干垣发布了新的文献求助10
1分钟前
1分钟前
发发完成签到,获得积分10
1分钟前
所所应助tengs采纳,获得10
1分钟前
嗨嗨嗨完成签到 ,获得积分10
1分钟前
1分钟前
geen发布了新的文献求助10
1分钟前
玉252完成签到 ,获得积分10
1分钟前
小蘑菇应助geen采纳,获得10
1分钟前
1分钟前
李健应助LT采纳,获得10
1分钟前
深情安青应助sgst采纳,获得10
1分钟前
撒西不理发布了新的文献求助10
1分钟前
义气幼珊完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238748
求助须知:如何正确求助?哪些是违规求助? 2884151
关于积分的说明 8232606
捐赠科研通 2552250
什么是DOI,文献DOI怎么找? 1380540
科研通“疑难数据库(出版商)”最低求助积分说明 649053
邀请新用户注册赠送积分活动 624754