Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-based Machine Learning Approach

创伤性脑损伤 主管(地质) 人口 百分位 人头 头部受伤 人工智能 医学 回归分析 计算机科学 统计 数学 外科 生物 物理 精神科 古生物学 吸收(声学) 环境卫生 声学
作者
Kshitiz Upadhyay,Roshan Jagani,Dimitris G. Giovanis,Ahmed Alshareef,Andrew K. Knutsen,Curtis L. Johnson,Aaron Carass,Philip V. Bayly,Michael D. Shields,K.T. Ramesh
出处
期刊:Military Medicine [Oxford University Press]
卷期号:189 (Supplement_3): 608-617
标识
DOI:10.1093/milmed/usae199
摘要

ABSTRACT Introduction Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. Materials and Methods Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. Results An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. Conclusions Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci发布了新的文献求助10
1秒前
1秒前
smile应助慕容采文采纳,获得20
1秒前
总攻大人完成签到,获得积分10
1秒前
科研消炎发布了新的文献求助10
1秒前
思源应助刘思琪采纳,获得10
1秒前
淡然的平蓝完成签到,获得积分10
1秒前
积极友绿完成签到,获得积分10
2秒前
等待的道消完成签到,获得积分10
2秒前
wanci应助LIN96T采纳,获得10
2秒前
gwh发布了新的文献求助10
2秒前
2秒前
3秒前
浮熙发布了新的文献求助10
3秒前
星辰大海应助Wang采纳,获得10
3秒前
Yelanjiao完成签到,获得积分10
3秒前
4秒前
aslink发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
知性的成关注了科研通微信公众号
5秒前
5秒前
冽飏完成签到,获得积分20
5秒前
斯文冷亦发布了新的文献求助10
6秒前
1177完成签到,获得积分20
6秒前
yang完成签到 ,获得积分10
6秒前
6秒前
刘钱美子发布了新的文献求助10
8秒前
x1发布了新的文献求助10
9秒前
无糖的问题完成签到,获得积分20
9秒前
jjy完成签到 ,获得积分10
9秒前
bkagyin应助余佘采纳,获得30
9秒前
10秒前
毕业完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
不吃香菇完成签到,获得积分10
11秒前
星辰大海应助仲夏采纳,获得10
11秒前
Bronx发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738