Combined helical-blade-strengthened co-flow focusing and high-throughput screening for the synthesis of highly homogeneous nanoliposomes

分散性 材料科学 纳米技术 吞吐量 粒径 粒子(生态学) 微流控 微通道 纳米医学 放大 计算机科学 纳米颗粒 机械工程 工艺工程 工程类 化学工程 物理 无线 电信 海洋学 经典力学 高分子化学 地质学
作者
Haoji Wang,Zhengyi Lan,Run Tian,Liang Xiao,Fuhao Jia,Ming Ma,H Chen
出处
期刊:Nano Today [Elsevier]
卷期号:56: 102301-102301
标识
DOI:10.1016/j.nantod.2024.102301
摘要

Nanoliposomes have been widely employed as promising drug delivery vehicles for the treatment of various diseases. However, the large-scale synthesis of drug-loaded nanoliposomes manifesting a highly uniform particle size is impeded by several unmet challenges. Herein a novel helical-blade-strengthened co-flow focusing (HBSCF) device was developed by installing multiple parallel helical blades in a commonly used co-flow focusing microfluidic device. This transformation in the microchannel structure may accelerate the mixing of aqueous and lipid streams in a radial direction, thereby affording the production of nanoliposomes with a significantly lower polydispersity index (PDI) value in terms of particle size. Moreover, a high-throughput experimental platform was developed by employing HBSCF device alongside its integration with various automation modules, which afforded 672 distinct experimental schemes for the synthesis and size characterization of drug-loaded nanoliposomes within 40 h. Afterwards, based on the above obtained large data set of nanoliposomes, a typical machine learning (ML) model pertaining to particle size was established to predict candidate synthesis schemes for the desired average particle size. Therefore, by narrowing the screening ranges through ML, the final synthesis scheme capable of producing liposomes with the desired particle size along with minimum PDI value can be precisely and rapidly obtained using automated experiments based on the same platform. Taken together, an effective integration of the HBSCF synthesis along with an automated high-throughput experimental platform may have broad implications for the industrialization and clinical application of nanomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChiDaiOLD发布了新的文献求助10
1秒前
2秒前
szl完成签到,获得积分10
2秒前
3秒前
orixero应助跳跃的静曼采纳,获得10
3秒前
诺奖离我十万八千里完成签到,获得积分10
3秒前
高高发布了新的文献求助10
3秒前
7秒前
深情安青应助机智的青槐采纳,获得10
7秒前
茶茶发布了新的文献求助10
7秒前
szl发布了新的文献求助10
7秒前
Lucas应助京阿尼采纳,获得10
8秒前
甜甜晓露完成签到,获得积分10
9秒前
科研通AI5应助qifa采纳,获得10
9秒前
shrike完成签到 ,获得积分10
9秒前
有魅力白开水完成签到,获得积分20
9秒前
小蒲完成签到 ,获得积分10
10秒前
万能图书馆应助大力鱼采纳,获得10
10秒前
11秒前
Rrr发布了新的文献求助10
12秒前
跳跃的静曼完成签到,获得积分10
12秒前
丰富的不惜完成签到,获得积分10
13秒前
14秒前
wfc完成签到,获得积分10
14秒前
浅梨涡完成签到 ,获得积分10
16秒前
JamesPei应助椰子熟了耶采纳,获得20
17秒前
hanyang965发布了新的文献求助10
17秒前
orixero应助喵呜采纳,获得10
17秒前
17秒前
17秒前
18秒前
en发布了新的文献求助10
18秒前
19秒前
白宝宝北北白应助氕氘氚采纳,获得10
19秒前
20秒前
进取拼搏完成签到,获得积分10
20秒前
hehsk完成签到,获得积分10
20秒前
无限鞅完成签到,获得积分20
20秒前
21秒前
DY完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808