计算生物学
免疫原性
诱导多能干细胞
生物
药物发现
生物信息学
信使核糖核酸
基因
遗传学
免疫系统
胚胎干细胞
作者
Uğur Şahin,Katalin Karikó,Özlem Türeci
摘要
The therapeutic potential ofin vitro-transcribed mRNA (IVT mRNA) extends from prophylactic and therapeutic vaccines to applications such as protein replacement and genome engineering. In this Review, the authors describe the recent developments in the IVT mRNA field, discuss the class-specific challenges with regards to translating IVT mRNA into a biopharmaceutical, and provide an overview of IVT mRNA drugs in development for different indications. In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI