预处理程序
雅可比矩阵与行列式
离散化
计算机科学
Schwarz交替法
应用数学
计算流体力学
迭代法
数学
数学优化
并行计算
计算科学
算法
区域分解方法
数学分析
有限元法
物理
机械
热力学
作者
Xiao‐Chuan Cai,William Gropp,David E. Keyes,Moulay D. Tidriri
标识
DOI:10.1007/978-3-663-14007-8_3
摘要
Newton-Krylov methods are potentially well suited for the implicit solution of nonlinear problems whenever it is unreasonable to compute or store a true Jacobian. Krylov-Schwarz iterative methods are well suited for the parallel implicit solution of multidimensional systems of boundary value problems that arise in CFD. They provide good data locality so that even a high-latency workstation network can be employed as a parallel machine. We call the combination of these two methods Newton-Krylov-Schwarz and report numerical experiments on some algorithmic and implementation aspects: the use of mixed discretization schemes in the (implicitly defined) Jacobian and its preconditioner, the selection of the differencing parameter in the formation of the action of the Jacobian, the use of a coarse grid in additive Schwarz preconditioning, and workstation network implementation. Three model problems are considered: a convection-diffusion problem, the full potential equation, and the Euler equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI