清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns

计算机科学 脑电图 期限(时间) 人工智能 模式识别(心理学) 语音识别 情绪识别 人工神经网络 心理学 神经科学 量子力学 物理
作者
Clarence Tan,Marko Šarlija,Nikola Kasabov
出处
期刊:Neurocomputing [Elsevier]
卷期号:434: 137-148 被引量:76
标识
DOI:10.1016/j.neucom.2020.12.098
摘要

Emotion recognition still poses a challenge lying at the core of the rapidly growing area of affective computing and is crucial for establishing a successful human–computer interaction. Identification and understanding of emotions are achieved through various measures, such as subjective self-reports, face-tracking, voice analysis, gaze-tracking, as well as the analysis of autonomic and central neurophysiological measurements. Current approaches to emotion recognition based on electroencephalography (EEG) mostly rely on various handcrafted features extracted over relatively long time windows of EEG during participants exposure to appropriate affective stimuli. In this paper, we present a short-term emotion recognition framework based on spiking neural network (SNN) modelling of spatio-temporal EEG patterns. Our method relies on EEG signal segmentation based on detection of short-term changes in facial landmarks, and as such includes no computation of handcrafted EEG features. Differences between participants’ EEG properties are taken into account via subject-dependent spike encoding in the formulated subject-independent emotion recognition task. We test our methods on the publicly available DEAP and MAHNOB-HCI databases due to the availability of both EEG and frontal face video data. Through an exhaustive hyperparameter optimisation strategy, we show that the proposed SNN-based representation of EEG spiking patterns provides valuable information for short- term emotion recognition. The obtained accuracies are 78.97% and 79.39% in arousal classification, and 67.76% and 72.12% in valence classification, on the DEAP and MAHNOB-HCI datasets, respectively. Furthermore, through the application of a brain-inspired SNN model, this study provides novel insight and helps in the understanding of the neural mechanisms involved in emotional processing in the context of audiovisual stimuli, such as affective videos. The presented results encourage the use of the proposed EEG processing methodology as a complement to existing features and methods commonly used for EEG-based emotion recognition, especially for short-term arousal recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
bing完成签到 ,获得积分10
1分钟前
星际舟完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
紫熊完成签到,获得积分10
3分钟前
wx1完成签到 ,获得积分0
3分钟前
興崋完成签到 ,获得积分10
4分钟前
orixero应助SCH_zhu采纳,获得10
4分钟前
4分钟前
firewood完成签到 ,获得积分10
4分钟前
SCH_zhu完成签到,获得积分10
4分钟前
SCH_zhu发布了新的文献求助10
4分钟前
4分钟前
懵懂的怜南发布了新的文献求助150
4分钟前
Spring发布了新的文献求助10
4分钟前
胜天半子完成签到 ,获得积分10
5分钟前
果粒多完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
sysi完成签到 ,获得积分10
5分钟前
6分钟前
可夫司机完成签到 ,获得积分10
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
Ethan完成签到 ,获得积分0
6分钟前
刘刘完成签到 ,获得积分10
7分钟前
lihuiying5aini完成签到,获得积分10
7分钟前
cc完成签到,获得积分10
7分钟前
淡然的晓旋完成签到 ,获得积分10
8分钟前
DAY发布了新的文献求助10
8分钟前
DAY完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
SciGPT应助乐观莺采纳,获得10
9分钟前
9分钟前
huhu发布了新的文献求助10
9分钟前
9分钟前
乐观莺发布了新的文献求助10
9分钟前
Spring发布了新的文献求助10
9分钟前
壬湦完成签到,获得积分10
10分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471474
求助须知:如何正确求助?哪些是违规求助? 3064520
关于积分的说明 9088346
捐赠科研通 2755155
什么是DOI,文献DOI怎么找? 1511863
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473