亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns

计算机科学 脑电图 期限(时间) 人工智能 模式识别(心理学) 语音识别 情绪识别 人工神经网络 心理学 神经科学 量子力学 物理
作者
Clarence Tan,Marko Šarlija,Nikola Kasabov
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:434: 137-148 被引量:78
标识
DOI:10.1016/j.neucom.2020.12.098
摘要

Emotion recognition still poses a challenge lying at the core of the rapidly growing area of affective computing and is crucial for establishing a successful human–computer interaction. Identification and understanding of emotions are achieved through various measures, such as subjective self-reports, face-tracking, voice analysis, gaze-tracking, as well as the analysis of autonomic and central neurophysiological measurements. Current approaches to emotion recognition based on electroencephalography (EEG) mostly rely on various handcrafted features extracted over relatively long time windows of EEG during participants exposure to appropriate affective stimuli. In this paper, we present a short-term emotion recognition framework based on spiking neural network (SNN) modelling of spatio-temporal EEG patterns. Our method relies on EEG signal segmentation based on detection of short-term changes in facial landmarks, and as such includes no computation of handcrafted EEG features. Differences between participants’ EEG properties are taken into account via subject-dependent spike encoding in the formulated subject-independent emotion recognition task. We test our methods on the publicly available DEAP and MAHNOB-HCI databases due to the availability of both EEG and frontal face video data. Through an exhaustive hyperparameter optimisation strategy, we show that the proposed SNN-based representation of EEG spiking patterns provides valuable information for short- term emotion recognition. The obtained accuracies are 78.97% and 79.39% in arousal classification, and 67.76% and 72.12% in valence classification, on the DEAP and MAHNOB-HCI datasets, respectively. Furthermore, through the application of a brain-inspired SNN model, this study provides novel insight and helps in the understanding of the neural mechanisms involved in emotional processing in the context of audiovisual stimuli, such as affective videos. The presented results encourage the use of the proposed EEG processing methodology as a complement to existing features and methods commonly used for EEG-based emotion recognition, especially for short-term arousal recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
5秒前
吹皱一湖春水完成签到 ,获得积分10
7秒前
9秒前
AWESOME Ling发布了新的文献求助10
13秒前
AWESOME Ling完成签到,获得积分10
26秒前
33秒前
suki发布了新的文献求助10
39秒前
大胆的忆安完成签到 ,获得积分10
44秒前
feiCheung完成签到 ,获得积分10
1分钟前
suki完成签到,获得积分10
1分钟前
沙脑完成签到 ,获得积分10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
1分钟前
景景景发布了新的文献求助10
1分钟前
orixero应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助景景景采纳,获得10
2分钟前
猫猫球完成签到 ,获得积分10
2分钟前
3分钟前
杨学清发布了新的文献求助10
4分钟前
no1lbt完成签到 ,获得积分10
4分钟前
大模型应助杨学清采纳,获得10
4分钟前
nicolaslcq完成签到,获得积分10
4分钟前
捉迷藏完成签到,获得积分10
5分钟前
火以敬完成签到,获得积分10
5分钟前
孙阳阳完成签到 ,获得积分10
6分钟前
6分钟前
小垃圾发布了新的文献求助10
6分钟前
6分钟前
chnhen发布了新的文献求助10
6分钟前
科研通AI5应助小垃圾采纳,获得10
6分钟前
yuyu完成签到,获得积分10
6分钟前
草木发布了新的文献求助10
6分钟前
研友_nVWP2Z完成签到 ,获得积分10
7分钟前
chnhen完成签到,获得积分10
8分钟前
充电宝应助科研通管家采纳,获得10
8分钟前
善学以致用应助Aqib采纳,获得10
8分钟前
xicifish完成签到,获得积分10
9分钟前
朱朱子完成签到 ,获得积分10
9分钟前
冷冷完成签到 ,获得积分10
9分钟前
ffff完成签到 ,获得积分10
9分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280593
关于积分的说明 10020088
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648