MSFL: A Model for Fault Localization Using Mutation-Spectra Technique

调试 语句(逻辑) 断层(地质) 排名(信息检索) 计算机科学 过程(计算) 序列(生物学) 相似性(几何) 突变 数据挖掘 人工智能 突变体 任务(项目管理) 软件 算法 机器学习 程序设计语言 工程类 生物 遗传学 系统工程 古生物学 政治学 基因 法学 图像(数学)
作者
Arpita Dutta,Sangharatna Godboley
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 156-173 被引量:4
标识
DOI:10.1007/978-3-030-67084-9_10
摘要

Fault localization (FL) is the most time-consuming and tedious task, while debugging. Several good techniques have been proposed for effective fault localization. These effective techniques justify the Lean methodology, where the waste process usually been avoided. However, most of the techniques are suffering with the problem of limited accuracy. To overcome the weakness of a technique there is a need of refinement and up-gradation of that technique. To achieve this, we can hybridize two different techniques to take advantages of both the techniques. In this paper, we propose to hybridize Mutation based testing with Spectrum based fault localization. This is a fact that both the techniques are rich in their domains. In our work, we are combining best of these techniques. We first create several mutants and drive along with the test cases to produce spectra for each mutant. This process is accountable under Agile Software Testing. These generated spectra for all mutants are supplied to fault localization techniques such as Tarantula, Barinel, Ochiai, and DStar to generate the statement ranking sequence for each mutant. Similarly, we compute the spectra for faulty program and also the statement ranking sequence. Based upon the similarity between the statement ranking sequence of faulty program and mutants, the bug is localized to most similar mutated line. We have experimented with nine open-source programs and achieved 36.48% improvement over existing FL techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冲浪男孩226完成签到,获得积分10
刚刚
Rottyyii完成签到,获得积分20
1秒前
慕青应助失眠的流沙采纳,获得10
1秒前
星星完成签到 ,获得积分10
2秒前
褚香旋完成签到,获得积分10
2秒前
2秒前
Lucas应助zt采纳,获得10
4秒前
peng123完成签到,获得积分20
5秒前
5秒前
禹冷玉完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
euler发布了新的文献求助10
8秒前
XIXIXI发布了新的文献求助10
11秒前
li完成签到,获得积分10
11秒前
小蘑菇应助失眠的流沙采纳,获得10
11秒前
11秒前
peng123发布了新的文献求助10
12秒前
无糖零脂发布了新的文献求助10
12秒前
鹿傥发布了新的文献求助10
13秒前
13秒前
323431完成签到,获得积分10
14秒前
充电宝应助whuhustwit采纳,获得10
14秒前
14秒前
15秒前
16秒前
李伟完成签到,获得积分10
16秒前
17秒前
上官若男应助柔弱云朵采纳,获得10
17秒前
小魔女完成签到,获得积分10
17秒前
Hello应助浮晨采纳,获得10
18秒前
18秒前
汉堡包应助四糸乃采纳,获得10
19秒前
七号楼少女完成签到,获得积分10
20秒前
20秒前
Aoren完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546