CAVA: A Visual Analytics System for Exploratory Columnar Data Augmentation Using Knowledge Graphs

计算机科学 视觉分析 分析 数据挖掘 交互式视觉分析 数据科学 数据可视化 探索性数据分析 数据分析 可视化 情报检索 人机交互 机器学习
作者
Dylan Cashman,Shenyu Xu,Subhajit Das,Florian Heimerl,Cong Liu,Shah Rukh Humayoun,Michael Gleicher,Alex Endert,Remco Chang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 1731-1741 被引量:23
标识
DOI:10.1109/tvcg.2020.3030443
摘要

Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis. In this paper, we present CAVA, a system that integrates data curation and data augmentation with the traditional data exploration and analysis tasks, enabling information foraging in-situ during analysis. Identifying attributes to add to the dataset is difficult because it requires human knowledge to determine which available attributes will be helpful for the ensuing analytical tasks. CAVA crawls knowledge graphs to provide users with a a broad set of attributes drawn from external data to choose from. Users can then specify complex operations on knowledge graphs to construct additional attributes. CAVA shows how visual analytics can help users forage for attributes by letting users visually explore the set of available data, and by serving as an interface for query construction. It also provides visualizations of the knowledge graph itself to help users understand complex joins such as multi-hop aggregations. We assess the ability of our system to enable users to perform complex data combinations without programming in a user study over two datasets. We then demonstrate the generalizability of CAVA through two additional usage scenarios. The results of the evaluation confirm that CAVA is effective in helping the user perform data foraging that leads to improved analysis outcomes, and offer evidence in support of integrating data augmentation as a part of the visual analytics pipeline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助hgsd采纳,获得10
1秒前
顾己完成签到,获得积分10
3秒前
充电宝应助shinhee采纳,获得10
3秒前
3秒前
4秒前
大西瓜完成签到 ,获得积分10
4秒前
wallonce发布了新的文献求助200
4秒前
完美世界应助jagger采纳,获得10
6秒前
从容芮应助伶俐一曲采纳,获得10
6秒前
Will完成签到 ,获得积分10
8秒前
tuanheqi应助YangSY采纳,获得200
9秒前
9秒前
10秒前
LiaoPiggg发布了新的文献求助10
10秒前
Sophie完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
lidd完成签到,获得积分10
12秒前
婧婷完成签到,获得积分10
12秒前
LEO完成签到 ,获得积分20
12秒前
丘比特应助lihuachen91采纳,获得10
12秒前
勤奋幻柏完成签到,获得积分10
13秒前
13秒前
mulidexin2021发布了新的文献求助10
15秒前
得不到完成签到 ,获得积分10
15秒前
lidd发布了新的文献求助10
16秒前
16秒前
今后应助729采纳,获得10
17秒前
Spine Lin发布了新的文献求助30
17秒前
17秒前
梦雨完成签到,获得积分20
18秒前
18秒前
20秒前
wan_lo完成签到,获得积分10
20秒前
tina3058完成签到,获得积分10
21秒前
嘤嘤怪应助韦颖采纳,获得20
21秒前
22秒前
V——V5555完成签到 ,获得积分10
23秒前
NexusExplorer应助Spine Lin采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483