Prospective Evaluation of the NETest as a Liquid Biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumors: An ENETS Center of Excellence Experience

医学 嗜铬粒蛋白A 内科学 活检 麦克内马尔试验 胃肠病学 肺癌 进行性疾病 生物标志物 病理 疾病 免疫组织化学 化学 数学 统计 生物化学
作者
Anna Malczewska,Magdalena Witkowska,Monika Wójcik-Giertuga,Katarzyna Kuśnierz,Agnes Bocian,Agata Walter,Mateusz Rydel,Amanda Robek,Sylwia Pierzchała,Magdalena Malczewska,Izabela Leś-Zielińska,Damian Czyżewski,Dariusz Ziora,Joanna Pilch-Kowalczyk,Wojciech Zajęcki,Beata Kos‐Kudła
出处
期刊:Neuroendocrinology [S. Karger AG]
卷期号:111 (4): 304-319 被引量:24
标识
DOI:10.1159/000508106
摘要

There is a substantial unmet clinical need for an accurate and effective blood biomarker for neuroendocrine neoplasms (NEN). We therefore evaluated, under real-world conditions in an ENETS Center of Excellence (CoE), the clinical utility of the NETest as a liquid biopsy and compared its utility with chromogranin A (CgA) measurement.The cohorts were: gastroenteropancreatic NEN (GEP-NEN; n = 253), bronchopulmonary NEN (BPNEN; n = 64), thymic NEN (n = 1), colon cancer (n = 37), non-small-cell lung cancer (NSCLC; n = 63), benign lung disease (n = 59), and controls (n = 86). In the GEPNEN group, 164 (65%) had image-positive disease (IPD, n = 135) or were image-negative but resection-margin/biopsy-positive (n = 29), and were graded as G1 (n = 106), G2 (n = 49), G3 (n = 7), or no data (n = 2). The remainder (n = 71) had no evidence of disease (NED). In the BPNEN group, 43/64 (67%) had IPD. Histology revealed typical carcinoids (TC, n = 14), atypical carcinoids (AC, n = 14), small-cell lung cancer (SCLC, n = 11), and large-cell neuroendocrine carcinoma (LCNEC, n = 4). Disease status (stable or progressive) was evaluated according to RECIST v1.1. Blood sampling involved NETest (n = 563) and NETest/CgA analysis matched samples (n = 178). NETest was performed by PCR (on a scale of 0-100), with a score ≥20 reflecting a disease-positive status and >40 reflecting progressive disease. CgA positivity was determined by ELISA. Samples were deidentified and measurements blinded. The Kruskal-Wallis, Mann-Whitney U, and McNemar tests, and the area under the curve (AUC) of the receiver-operating characteristics (ROC) were used in the statistical analysis.In the GEPNEN group, NETest was significantly higher (34.4 ± 1.8, p < 0.0001) in disease-positive patients than in patients with NED (10.5 ± 1, p < 0.0001), colon cancer patients (18 ± 4, p < 0.0004), and controls (7 ± 0.5, p < 0.0001). Sensitivity for detecting disease compared to controls was 89% and specificity was 94%. NETest levels were increased in G2 vs. G1 (39 ± 3 vs. 32 ± 2, p = 0.02) and correlated with stage (localized: 26 ± 2 vs. regional/distant: 40 ± 3, p = 0.0002) and progression (55 ± 5 vs. 34 ± 2 in stable disease, p = 0.0005). In the BPNEN group, diagnostic sensitivity was 100% and levels were significantly higher in patients with bronchopulmonary carcinoids (BPC; 30 ± 1.3) who had IPD than in controls (7 ± 0.5, p < 0.0001), patients with NED (24.1 ± 1.3, p < 0.005), and NSCLC patients (17 ± 3, p = 0.0001). NETest levels were higher in patients with poorly differentiated BPNEN (LCNEC + SCLC; 59 ± 7) than in those with BPC (30 ± 1.3, p = 0.0005) or progressive disease (57.8 ± 7), compared to those with stable disease (29.4 ± 1, p < 0.0001). The AUC for differentiating disease from controls was 0.87 in the GEPNEN group and 0.99 in BPC patients (p < 0.0001). Matched CgA analysis was performed in 178 patients. In the GEPNEN group (n = 135), NETest was significantly more accurate for detecting disease (99%) than CgA positivity (53%; McNemar test χ2 = 87, p < 0.0001). In the BPNEN group (n = 43), NETest was significantly more accurate for disease detection (100%) than CgA positivity (26%; McNemar's test χ2 = 30, p < 0.0001).The NETest is an accurate diagnostic for GEPNEN and BPNEN. It exhibits tumor biology correlation with grading, staging, and progression. CgA as a biomarker is significantly less accurate than NETest. The NETest has substantial clinical utility that can facilitate patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆皮小小酥完成签到 ,获得积分10
1秒前
ycool完成签到 ,获得积分10
1秒前
5秒前
当女遇到乔完成签到 ,获得积分10
5秒前
痴情的靖柔完成签到 ,获得积分10
8秒前
abcdefg完成签到,获得积分10
11秒前
Sewerant完成签到 ,获得积分10
14秒前
杨琴完成签到 ,获得积分10
15秒前
万能图书馆应助Charity采纳,获得10
21秒前
cheng完成签到 ,获得积分10
21秒前
sangxue完成签到 ,获得积分10
23秒前
小康完成签到 ,获得积分10
29秒前
Charity完成签到,获得积分10
29秒前
可yi完成签到,获得积分10
30秒前
蓝桉完成签到 ,获得积分10
30秒前
33秒前
可以2完成签到,获得积分10
37秒前
wp4455777完成签到,获得积分10
48秒前
qianci2009完成签到,获得积分10
49秒前
精明冰蓝完成签到,获得积分10
56秒前
ZH完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
momo完成签到,获得积分10
1分钟前
光头饼发布了新的文献求助10
1分钟前
想睡觉的小笼包完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
方赫然应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
科研通AI2S应助加湿器采纳,获得20
1分钟前
有有完成签到 ,获得积分10
1分钟前
yangjinru完成签到 ,获得积分10
1分钟前
光头饼完成签到,获得积分10
1分钟前
熊雅完成签到,获得积分10
1分钟前
严西完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
Chochee完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397994
求助须知:如何正确求助?哪些是违规求助? 3006971
关于积分的说明 8823718
捐赠科研通 2694290
什么是DOI,文献DOI怎么找? 1475892
科研通“疑难数据库(出版商)”最低求助积分说明 682528
邀请新用户注册赠送积分活动 675965