Recalibration convolutional networks for learning interaction knowledge graph embedding

计算机科学 嵌入 理论计算机科学 一般化 人工智能 特征学习 图形 知识图 代表(政治) 关系(数据库) 多义 语义学(计算机科学) 机器学习 数据挖掘 数学 数学分析 政治 政治学 法学 程序设计语言
作者
Zhifei Li,Hai Liu,Zhaoli Zhang,Tingting Liu,Jiangbo Shu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:427: 118-130 被引量:37
标识
DOI:10.1016/j.neucom.2020.07.137
摘要

Knowledge graph embedding aims to learn the embedded representation of entities and relations in knowledge graphs which is very important for the subsequent link prediction task. However, two key issues are existed for learning knowledge graph embedding: 1) How to take full advantage of the deep learning algorithms to generate expressive embeddings? 2) How to solve the polysemy phenomenon caused by multi-relations knowledge graphs that entities and relations show different semantics after involving different predictions? In this article, to tackle the first problem, the multi-layer convolutional networks are adopted to generate features about entities and relations then used to predict candidate entity. Moreover, the representation power of the networks is strengthened by integrating an effective recalibration mechanism which can accentuate informative features selectively. To tackle the second problem, we propose to learn multiple specific interaction embeddings. Instead of directly learning one general embedding to preserve all information for each entity and relation, their interactions are captured to model the cross-semantic influence from relations to entities and from entities to relations. Compared to traditional embedding models, the proposed model can provide more generalization capabilities and effectively capture potential links between entities and relations. Experimental results have revealed that the proposed model achieves the state-of-the-art performance for general evaluation metrics on link prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果王子6699完成签到 ,获得积分10
1秒前
Niyuw发布了新的文献求助10
1秒前
Xiaoxiao发布了新的文献求助20
3秒前
醉熏的鑫发布了新的文献求助10
4秒前
迅速海云完成签到,获得积分10
4秒前
4秒前
栗子的小母牛完成签到,获得积分10
5秒前
dh完成签到,获得积分10
8秒前
岩墩墩完成签到,获得积分10
9秒前
克姑美完成签到 ,获得积分10
12秒前
pangao完成签到,获得积分10
12秒前
ysssbq完成签到,获得积分10
14秒前
15秒前
上好佳完成签到 ,获得积分10
15秒前
大模型应助Yeong采纳,获得10
16秒前
量子星尘发布了新的文献求助30
16秒前
17秒前
123完成签到,获得积分10
17秒前
谢陈完成签到 ,获得积分10
18秒前
lilili完成签到,获得积分10
19秒前
20秒前
xiaoying发布了新的文献求助10
20秒前
SciGPT应助Eric_Liuzy采纳,获得10
21秒前
liu完成签到 ,获得积分10
21秒前
qixiaoqi发布了新的文献求助10
22秒前
23秒前
A溶大美噶发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
26秒前
27秒前
kevin发布了新的文献求助10
27秒前
满意的初南完成签到 ,获得积分10
28秒前
橙橙橙发布了新的文献求助10
28秒前
万能图书馆应助EVEN采纳,获得10
28秒前
28秒前
Yeong发布了新的文献求助10
29秒前
范先生发布了新的文献求助10
30秒前
disciple完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048