Recalibration convolutional networks for learning interaction knowledge graph embedding

计算机科学 嵌入 理论计算机科学 一般化 人工智能 特征学习 图形 知识图 代表(政治) 关系(数据库) 多义 语义学(计算机科学) 机器学习 数据挖掘 数学 数学分析 政治 政治学 法学 程序设计语言
作者
Zhifei Li,Hai Liu,Zhaoli Zhang,Tingting Liu,Jiangbo Shu
出处
期刊:Neurocomputing [Elsevier]
卷期号:427: 118-130 被引量:37
标识
DOI:10.1016/j.neucom.2020.07.137
摘要

Knowledge graph embedding aims to learn the embedded representation of entities and relations in knowledge graphs which is very important for the subsequent link prediction task. However, two key issues are existed for learning knowledge graph embedding: 1) How to take full advantage of the deep learning algorithms to generate expressive embeddings? 2) How to solve the polysemy phenomenon caused by multi-relations knowledge graphs that entities and relations show different semantics after involving different predictions? In this article, to tackle the first problem, the multi-layer convolutional networks are adopted to generate features about entities and relations then used to predict candidate entity. Moreover, the representation power of the networks is strengthened by integrating an effective recalibration mechanism which can accentuate informative features selectively. To tackle the second problem, we propose to learn multiple specific interaction embeddings. Instead of directly learning one general embedding to preserve all information for each entity and relation, their interactions are captured to model the cross-semantic influence from relations to entities and from entities to relations. Compared to traditional embedding models, the proposed model can provide more generalization capabilities and effectively capture potential links between entities and relations. Experimental results have revealed that the proposed model achieves the state-of-the-art performance for general evaluation metrics on link prediction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
ahq完成签到,获得积分10
1秒前
DDDD发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
sprileye完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
小猪快跑完成签到,获得积分10
5秒前
5秒前
科研通AI6应助阿季采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
niko发布了新的文献求助10
5秒前
niko发布了新的文献求助10
6秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569592
求助须知:如何正确求助?哪些是违规求助? 4654253
关于积分的说明 14710045
捐赠科研通 4595902
什么是DOI,文献DOI怎么找? 2522102
邀请新用户注册赠送积分活动 1493376
关于科研通互助平台的介绍 1463987