Recalibration convolutional networks for learning interaction knowledge graph embedding

计算机科学 嵌入 理论计算机科学 一般化 人工智能 特征学习 图形 知识图 代表(政治) 关系(数据库) 多义 语义学(计算机科学) 机器学习 数据挖掘 数学 政治 数学分析 程序设计语言 法学 政治学
作者
Zhifei Li,Hai Liu,Zhaoli Zhang,Tingting Liu,Jiangbo Shu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:427: 118-130 被引量:37
标识
DOI:10.1016/j.neucom.2020.07.137
摘要

Knowledge graph embedding aims to learn the embedded representation of entities and relations in knowledge graphs which is very important for the subsequent link prediction task. However, two key issues are existed for learning knowledge graph embedding: 1) How to take full advantage of the deep learning algorithms to generate expressive embeddings? 2) How to solve the polysemy phenomenon caused by multi-relations knowledge graphs that entities and relations show different semantics after involving different predictions? In this article, to tackle the first problem, the multi-layer convolutional networks are adopted to generate features about entities and relations then used to predict candidate entity. Moreover, the representation power of the networks is strengthened by integrating an effective recalibration mechanism which can accentuate informative features selectively. To tackle the second problem, we propose to learn multiple specific interaction embeddings. Instead of directly learning one general embedding to preserve all information for each entity and relation, their interactions are captured to model the cross-semantic influence from relations to entities and from entities to relations. Compared to traditional embedding models, the proposed model can provide more generalization capabilities and effectively capture potential links between entities and relations. Experimental results have revealed that the proposed model achieves the state-of-the-art performance for general evaluation metrics on link prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
哈哈哈发布了新的文献求助10
1秒前
3秒前
科研通AI5应助guojingjing采纳,获得10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
Airy完成签到,获得积分10
6秒前
内向如松完成签到,获得积分10
7秒前
8秒前
上官若男应助夜莺采纳,获得10
10秒前
Orijump发布了新的文献求助10
10秒前
10秒前
10秒前
miemie完成签到,获得积分10
10秒前
wanci应助星夜采纳,获得30
10秒前
内向如松发布了新的文献求助20
11秒前
11完成签到,获得积分10
12秒前
euy发布了新的文献求助10
12秒前
唐泽雪穗应助zha采纳,获得10
13秒前
唐泽雪穗应助zha采纳,获得10
13秒前
15秒前
15秒前
小豹子发布了新的文献求助10
16秒前
16秒前
17秒前
19秒前
Ava应助热心的幼旋采纳,获得10
19秒前
钱若祺完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
guojingjing发布了新的文献求助10
21秒前
kjinm发布了新的文献求助10
22秒前
酷炫芷珊完成签到,获得积分10
23秒前
川川完成签到 ,获得积分10
24秒前
xingni完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049551
求助须知:如何正确求助?哪些是违规求助? 4277489
关于积分的说明 13333822
捐赠科研通 4092139
什么是DOI,文献DOI怎么找? 2239507
邀请新用户注册赠送积分活动 1246375
关于科研通互助平台的介绍 1174960