Recalibration convolutional networks for learning interaction knowledge graph embedding

计算机科学 嵌入 理论计算机科学 一般化 人工智能 特征学习 图形 知识图 代表(政治) 关系(数据库) 多义 语义学(计算机科学) 机器学习 数据挖掘 数学 数学分析 政治 政治学 法学 程序设计语言
作者
Zhifei Li,Hai Liu,Zhaoli Zhang,Tingting Liu,Jiangbo Shu
出处
期刊:Neurocomputing [Elsevier]
卷期号:427: 118-130 被引量:37
标识
DOI:10.1016/j.neucom.2020.07.137
摘要

Knowledge graph embedding aims to learn the embedded representation of entities and relations in knowledge graphs which is very important for the subsequent link prediction task. However, two key issues are existed for learning knowledge graph embedding: 1) How to take full advantage of the deep learning algorithms to generate expressive embeddings? 2) How to solve the polysemy phenomenon caused by multi-relations knowledge graphs that entities and relations show different semantics after involving different predictions? In this article, to tackle the first problem, the multi-layer convolutional networks are adopted to generate features about entities and relations then used to predict candidate entity. Moreover, the representation power of the networks is strengthened by integrating an effective recalibration mechanism which can accentuate informative features selectively. To tackle the second problem, we propose to learn multiple specific interaction embeddings. Instead of directly learning one general embedding to preserve all information for each entity and relation, their interactions are captured to model the cross-semantic influence from relations to entities and from entities to relations. Compared to traditional embedding models, the proposed model can provide more generalization capabilities and effectively capture potential links between entities and relations. Experimental results have revealed that the proposed model achieves the state-of-the-art performance for general evaluation metrics on link prediction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助77采纳,获得10
刚刚
科研小白发布了新的文献求助10
刚刚
WANG完成签到,获得积分10
刚刚
丁昆发布了新的文献求助10
1秒前
1秒前
TinTin发布了新的文献求助10
2秒前
2秒前
科研通AI6应助BENRONG采纳,获得10
3秒前
3秒前
今后应助侠客采纳,获得10
3秒前
完美世界应助刘一一采纳,获得10
4秒前
情怀应助油条狗采纳,获得10
4秒前
fu完成签到,获得积分10
5秒前
5秒前
cc251672发布了新的文献求助10
6秒前
只爱LJT发布了新的文献求助10
6秒前
小J应助锅巴采纳,获得10
7秒前
7秒前
8秒前
李健应助天音法里奈采纳,获得10
9秒前
科目三应助rattlebox321采纳,获得10
10秒前
10秒前
10秒前
11秒前
老实奇迹发布了新的文献求助10
12秒前
12秒前
Pioneer完成签到 ,获得积分10
12秒前
13秒前
123发布了新的文献求助10
13秒前
13秒前
七叶树完成签到,获得积分10
13秒前
zhouxuefeng完成签到,获得积分10
14秒前
英吉利25发布了新的文献求助10
14秒前
14秒前
唐文硕发布了新的文献求助10
14秒前
侠客发布了新的文献求助10
15秒前
15秒前
lxt完成签到,获得积分10
16秒前
16秒前
Zx_1993应助wackykao采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175