清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recalibration convolutional networks for learning interaction knowledge graph embedding

计算机科学 嵌入 理论计算机科学 一般化 人工智能 特征学习 图形 知识图 代表(政治) 关系(数据库) 多义 语义学(计算机科学) 机器学习 数据挖掘 数学 数学分析 政治 政治学 法学 程序设计语言
作者
Zhifei Li,Hai Liu,Zhaoli Zhang,Tingting Liu,Jiangbo Shu
出处
期刊:Neurocomputing [Elsevier]
卷期号:427: 118-130 被引量:37
标识
DOI:10.1016/j.neucom.2020.07.137
摘要

Knowledge graph embedding aims to learn the embedded representation of entities and relations in knowledge graphs which is very important for the subsequent link prediction task. However, two key issues are existed for learning knowledge graph embedding: 1) How to take full advantage of the deep learning algorithms to generate expressive embeddings? 2) How to solve the polysemy phenomenon caused by multi-relations knowledge graphs that entities and relations show different semantics after involving different predictions? In this article, to tackle the first problem, the multi-layer convolutional networks are adopted to generate features about entities and relations then used to predict candidate entity. Moreover, the representation power of the networks is strengthened by integrating an effective recalibration mechanism which can accentuate informative features selectively. To tackle the second problem, we propose to learn multiple specific interaction embeddings. Instead of directly learning one general embedding to preserve all information for each entity and relation, their interactions are captured to model the cross-semantic influence from relations to entities and from entities to relations. Compared to traditional embedding models, the proposed model can provide more generalization capabilities and effectively capture potential links between entities and relations. Experimental results have revealed that the proposed model achieves the state-of-the-art performance for general evaluation metrics on link prediction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意台灯完成签到,获得积分10
29秒前
有人应助科研通管家采纳,获得10
47秒前
有人应助科研通管家采纳,获得10
47秒前
有人应助科研通管家采纳,获得10
47秒前
有人应助科研通管家采纳,获得10
47秒前
有人应助科研通管家采纳,获得10
47秒前
56秒前
阳光的丹雪完成签到,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
guan完成签到,获得积分10
1分钟前
xinjie发布了新的文献求助10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
qiongqiong完成签到 ,获得积分10
1分钟前
jojoly应助xinjie采纳,获得10
1分钟前
jojoly应助xinjie采纳,获得10
1分钟前
丘比特应助曾经问雁采纳,获得10
1分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
GMEd1son完成签到,获得积分10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
2分钟前
飞飞发布了新的文献求助10
2分钟前
sa完成签到 ,获得积分10
3分钟前
飞飞完成签到,获得积分10
3分钟前
xinjie发布了新的文献求助10
3分钟前
冉亦完成签到,获得积分10
3分钟前
GRATE完成签到 ,获得积分10
3分钟前
我有我风格完成签到 ,获得积分10
3分钟前
乔杰完成签到 ,获得积分10
4分钟前
华仔应助xinjie采纳,获得10
4分钟前
量子星尘发布了新的文献求助30
4分钟前
神勇的天问完成签到 ,获得积分10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
无极微光应助科研通管家采纳,获得50
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789037
求助须知:如何正确求助?哪些是违规求助? 5714702
关于积分的说明 15474095
捐赠科研通 4916983
什么是DOI,文献DOI怎么找? 2646691
邀请新用户注册赠送积分活动 1594335
关于科研通互助平台的介绍 1548797