硫酸盐
氯化物
碱土
化学
生态学
环境化学
生物
土壤水分
有机化学
作者
Lili Nan,Quanen Guo,Cao Shi-yu
标识
DOI:10.1016/j.jbiosc.2020.06.001
摘要
High-throughput sequencing was used to investigate the archaeal community structure and diversity, and associated influencing factors in the 5 subtypes and 13 genera of saline-alkali soil in Gansu Province, China. The results indicated the analysis of chemical parameters demonstrated statistically significant differences in these soils. Operational taxonomic units (OTUs), Chao 1, ACE, Simpson, and Shannon indexes of the archaeal community varied significantly in the 5 subtypes and 12 genera of soil except for chloride-type orthic solonchaks. The abundance was highest for sulfate-chloride-type meadow solonchaks and lowest for chloride-sulfate-type dry solonchaks. The diversity was highest for chloride-sulfate-type orthic solonchaks and lowest for sulfate-type orthic solonchaks. The archaeal community was dominated by the Euryarchaeota and Crenarchaeota. Except chloride-type orthic solonchaks; Halomicrobium in chloride-type meadow solonchaks (12.7%); Halobacterium in sulfate-chloride-type and chloride-sulfate-type dry solonchaks (11.1% and 9.2%, respectively); Candidatus Nitrososphaera in sulfate-chloride-type, chloride-sulfate-type, and sulphate-type meadow solonchaks; sulfate-type orthic solonchaks; and chloride bog solonchaks (9.0%, 21.6%, 27.0%, 45.3%, and 30.0%, respectively); Halorhabdus in sulfate-chloride-type orthic solonchaks, magnesium alkalized solonchaks, chloride-type dry solonchaks (15.7%, 11.5%, and 5.9%, respectively); and Haloarcula in chloride-sulfate-type orthic solonchaks (8.1%) were the most dominant archaea. Redundancy analysis showed that archaeal diversity was influenced by soil organic matter, total salt, sulfate anion, and zinc contents and pH. These results will lead to more comprehensive understanding of how 5 subtypes and 13 soil genera of saline-alkali soil affects microbial distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI