染色质
优先次序
电池类型
细胞
计算机科学
计算生物学
人工智能
生物
神经科学
基因
工程类
遗传学
管理科学
作者
Michael A. Skinnider,Jordan W. Squair,Claudia Kathe,Mark A. Anderson,Matthieu Gautier,Kaya J.E. Matson,Marco Milano,Thomas H. Hutson,Quentin Barraud,Aaron A. Phillips,Leonard J. Foster,Gioele La Manno,Ariel J. Levine,Grégoire Courtine
标识
DOI:10.1038/s41587-020-0605-1
摘要
We present Augur, a method to prioritize the cell types most responsive to biological perturbations in single-cell data. Augur employs a machine-learning framework to quantify the separability of perturbed and unperturbed cells within a high-dimensional space. We validate our method on single-cell RNA sequencing, chromatin accessibility and imaging transcriptomics datasets, and show that Augur outperforms existing methods based on differential gene expression. Augur identified the neural circuits restoring locomotion in mice following spinal cord neurostimulation. The cell types affected by biological perturbations in complex tissues are uncovered by single-cell analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI