Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning

随机性 信号(编程语言) 计算机科学 信号处理 预言 结构健康监测 噪音(视频) 模式识别(心理学) 复合数 人工智能 机器学习 材料科学 数据挖掘 复合材料 算法 数学 统计 图像(数学) 程序设计语言 雷达 电信
作者
Shweta Dabetwar,Stephen Ekwaro-Osire,João‐Paulo Dias
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASM International]
卷期号:7 (1) 被引量:22
标识
DOI:10.1115/1.4048867
摘要

Abstract Composite materials have a myriad of applications in complex engineering systems, and multiple structural health monitoring (SHM) strategies have been developed. However, these methods are challenging due to signal attenuation and excessive noise interference in composite materials. Signal processing can capture a small difference between the input–output signals associated with the severity of the damage in composites. Thus, the research question is “can signal processing techniques reduce the required number of features and assess the randomness of fatigue damage classification in composite materials using machine learning (ML) algorithms?” To answer this question, piezo-electric signals for carbon fiber reinforced polymer (CFRP) test specimens were taken from NASA Ames prognostics data repository. A framework based on a comparative analysis of signals was developed. For the first specific aim, the effectiveness of features based on statistical condition indicators of the sensor signals were evaluated. For the second specific aim, actuator-sensor signal pair were analyzed using cross-correlation to extract two features. These features were used to train and test four supervised ML algorithms for damage classification and their performance was discussed. For the third specific aim, randomness in the dataset of fatigue damage of the specimens was assessed. Results showed that by signal processing, the requirement of features for training ML was reduced with the improvement in the performance of ML. The randomness was captured by the utilization of two specimens from the same material. This work contributes to the improvement of intelligent damage classification of composite materials, operating under complex working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助沐浠采纳,获得10
1秒前
1秒前
高大黄蜂发布了新的文献求助10
2秒前
消失的牢大完成签到,获得积分20
2秒前
Czerkingsky完成签到,获得积分10
3秒前
一个正经人完成签到,获得积分10
3秒前
3秒前
3秒前
六六发布了新的文献求助10
3秒前
4秒前
一投必中完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
5秒前
uniqueycd完成签到,获得积分10
6秒前
我不会发布了新的文献求助10
6秒前
7秒前
8秒前
汉堡包应助坦率问枫采纳,获得10
9秒前
脑洞疼应助六六采纳,获得10
9秒前
周小鱼发布了新的文献求助10
10秒前
包子完成签到 ,获得积分10
10秒前
笨笨chen完成签到,获得积分20
10秒前
高毓完成签到,获得积分20
11秒前
朴素乐菱发布了新的文献求助10
11秒前
12秒前
zj发布了新的文献求助10
13秒前
笨笨chen发布了新的文献求助10
14秒前
木乙发布了新的文献求助10
14秒前
Lyyyw完成签到,获得积分10
15秒前
丙子哥完成签到 ,获得积分10
16秒前
桐桐应助homo采纳,获得10
16秒前
共享精神应助WN采纳,获得10
16秒前
17秒前
17秒前
天涯赤子完成签到,获得积分10
18秒前
马吉克wang完成签到,获得积分10
19秒前
zhangxueqing完成签到,获得积分10
19秒前
19秒前
SHAN发布了新的文献求助10
19秒前
dengdengdeng发布了新的文献求助30
20秒前
SYLH应助将将采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743501
求助须知:如何正确求助?哪些是违规求助? 3286076
关于积分的说明 10049116
捐赠科研通 3002764
什么是DOI,文献DOI怎么找? 1648411
邀请新用户注册赠送积分活动 784622
科研通“疑难数据库(出版商)”最低求助积分说明 750780