Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning

随机性 信号(编程语言) 计算机科学 信号处理 预言 结构健康监测 噪音(视频) 模式识别(心理学) 复合数 人工智能 机器学习 材料科学 数据挖掘 复合材料 算法 数学 统计 图像(数学) 程序设计语言 雷达 电信
作者
Shweta Dabetwar,Stephen Ekwaro-Osire,João‐Paulo Dias
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASME International]
卷期号:7 (1) 被引量:22
标识
DOI:10.1115/1.4048867
摘要

Abstract Composite materials have a myriad of applications in complex engineering systems, and multiple structural health monitoring (SHM) strategies have been developed. However, these methods are challenging due to signal attenuation and excessive noise interference in composite materials. Signal processing can capture a small difference between the input–output signals associated with the severity of the damage in composites. Thus, the research question is “can signal processing techniques reduce the required number of features and assess the randomness of fatigue damage classification in composite materials using machine learning (ML) algorithms?” To answer this question, piezo-electric signals for carbon fiber reinforced polymer (CFRP) test specimens were taken from NASA Ames prognostics data repository. A framework based on a comparative analysis of signals was developed. For the first specific aim, the effectiveness of features based on statistical condition indicators of the sensor signals were evaluated. For the second specific aim, actuator-sensor signal pair were analyzed using cross-correlation to extract two features. These features were used to train and test four supervised ML algorithms for damage classification and their performance was discussed. For the third specific aim, randomness in the dataset of fatigue damage of the specimens was assessed. Results showed that by signal processing, the requirement of features for training ML was reduced with the improvement in the performance of ML. The randomness was captured by the utilization of two specimens from the same material. This work contributes to the improvement of intelligent damage classification of composite materials, operating under complex working conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助fifteen采纳,获得10
1秒前
Akim应助赵维雪采纳,获得10
3秒前
李健的小迷弟应助赵维雪采纳,获得10
3秒前
慕青应助xxxt采纳,获得10
3秒前
4秒前
4秒前
JamesPei应助zhb1998采纳,获得10
4秒前
5秒前
陈宝妮完成签到,获得积分10
6秒前
6秒前
9秒前
paloc完成签到,获得积分20
9秒前
ddd完成签到,获得积分10
10秒前
开放的果汁完成签到,获得积分10
11秒前
咕噜咕噜发布了新的文献求助10
11秒前
小二郎应助lalala采纳,获得10
11秒前
松鼠发布了新的文献求助10
11秒前
11秒前
LN发布了新的文献求助10
12秒前
zkzk54发布了新的文献求助10
13秒前
13秒前
14秒前
77完成签到 ,获得积分10
14秒前
ttttt发布了新的文献求助10
14秒前
15秒前
紫靛橙完成签到,获得积分10
15秒前
16秒前
ZM完成签到,获得积分10
16秒前
16秒前
大模型应助dkshfk采纳,获得10
16秒前
17秒前
17秒前
lml发布了新的文献求助10
17秒前
17秒前
19秒前
复杂的一一完成签到,获得积分10
20秒前
33发布了新的文献求助10
20秒前
20秒前
21秒前
李大海发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943