Development of a noise elimination electrical impedance spectroscopy (neEIS) system for single cell identification

鉴定(生物学) 噪音(视频) 介电谱 电阻抗 电气工程 材料科学 电子工程 声学 计算机科学 工程类 物理 生物 电极 人工智能 图像(数学) 量子力学 植物 电化学
作者
Anh-Tung Tran,Daisuke Kawashima,Michiko Sugarawa,Hiromichi OBARA,Kennedy Omondi Okeyo,Masahiro Takei
出处
期刊:Sensing and bio-sensing research [Elsevier]
卷期号:30: 100381-100381 被引量:3
标识
DOI:10.1016/j.sbsr.2020.100381
摘要

We propose a noise elimination electrical impedance spectroscopy (neEIS) system for single cell identification whose characteristics are cell-free clamp structure and cell-position independent calibration. The function of the cell-free clamp structure is to enable a single cell to be freely located into neEIS system. The cell-position independent calibration consists of three steps; impedance measurement, electrode cell constant calculation, and single cell dielectric properties estimation. The cell-position independent calibration enables elimination the influence of noise associated with ions as well as electrical double layer during the measurement process. We demonstrate an application of neEIS system to discriminate three types of MRC-5 human lung fibroblasts; wild type (WT), GFP-fused histone (HT) modification, and GFP transfected (GFPT) MRC-5 cells suspended in a sucrose medium. To further evaluate the neEIS system, we simulated the electrical potential distribution and root means square error of single cell dielectric properties numerically. As a result, we obtained electric potential distribution which clearly characterized the internal change of single cell components. Moreover, we determined that the neEIS system is capable of accurate single cell identification after noises elimination with less than 1.05% average root means square error. Taken together, these results demonstrate that the proposed neEIS system has the potential to improve the performance of biosensors. Thus, this study will bring a new insight into the development of a biosensor system for high accuracy single cell identification as well as inspire the development of a diagnostic device for early fetal lung diseases based on the neEIS system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牛大锤完成签到,获得积分10
刚刚
所所应助春风明月采纳,获得10
1秒前
七月完成签到,获得积分20
2秒前
2秒前
嘿哈哈完成签到,获得积分10
2秒前
胡俊豪发布了新的文献求助10
3秒前
3秒前
科研通AI6应助Elite采纳,获得10
3秒前
共享精神应助qiii采纳,获得10
3秒前
4秒前
向北游完成签到,获得积分10
4秒前
4秒前
华仔应助年轻海云采纳,获得10
4秒前
josieyu1999完成签到,获得积分10
6秒前
dc发布了新的文献求助10
7秒前
mmxr完成签到,获得积分20
7秒前
法外狂徒完成签到,获得积分10
7秒前
哒哒哒发布了新的文献求助10
7秒前
万1发布了新的文献求助10
8秒前
科研通AI6应助fzzf采纳,获得10
8秒前
雪碧不是碳酸完成签到,获得积分10
9秒前
9秒前
漫漫发布了新的文献求助10
9秒前
在水一方应助内向的雨泽采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
清脆惜寒完成签到,获得积分10
10秒前
学术蟑螂完成签到,获得积分20
10秒前
郝誉发布了新的文献求助10
10秒前
酷波er应助Y12采纳,获得10
12秒前
NexusExplorer应助321采纳,获得10
12秒前
田一点发布了新的文献求助10
12秒前
sakiecon完成签到,获得积分10
12秒前
在水一方应助万1采纳,获得10
13秒前
Return应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277