清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

计算机科学 强化学习 作业车间调度 人工智能 调度(生产过程) 工作车间 机器学习 流水车间调度 数学优化 地铁列车时刻表 数学 操作系统
作者
Bao An Han,Jianjun Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 186474-186495 被引量:154
标识
DOI:10.1109/access.2020.3029868
摘要

Traditional approaches for job shop scheduling problems are ill-suited to deal with complex and changeable production environments due to their limited real-time responsiveness. Based on disjunctive graph dispatching, this work proposes a deep reinforcement learning (DRL) framework, that combines the advantages of real-time response and flexibility of a deep convolutional neural network (CNN) and reinforcement learning (RL), and learns behavior strategies directly according to the input manufacturing states, thus is more appropriate for practical order-oriented manufacturing problems. In this framework, a scheduling process using a disjunction graph is viewed as a multi-stage sequential decision-making problem and a deep CNN is used to approximate the state-action value. The manufacturing states are expressed as multi-channel images and input into the network. Various heuristic rules are used as available actions. By adopting the dueling double Deep Q-network with prioritized replay (DDDQNPR), the RL agent continually interacts with the scheduling environment through trial and error to obtain the best policy of combined actions for each decision step. Static computational experiments are performed on 85 JSSP instances from the well-known OR-Library. The results indicate that the proposed algorithm can obtain optimal solutions for small scale problems, and performs better than any single heuristic rule for large scale problems, with performances comparable to genetic algorithms. To prove the generalization and robustness of our algorithm, the instances with random initial states are used as validation sets during training to select the model with the best generalization ability, and then the performance of the trained policy on scheduling instances with different initial states is tested. The results show that the agent is able to get better solutions adaptively. Meanwhile, some studies on dynamic instances with random processing time are performed and experiment results indicate that out method can achieve comparable performances in dynamic environment in the short run.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
龙猫爱看书完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
27秒前
大雪封山完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
能干的语芙完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
sue发布了新的文献求助20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
赘婿应助sue采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sue完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
nmslwsnd250发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
司徒天动发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
司徒天动完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661054
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744049
捐赠科研通 2931835
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518