Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer

医学 旁体 宫颈癌 放射治疗计划 核医学 子宫颈 近距离放射治疗 豪斯多夫距离 直肠 放射治疗 癌症 放射科 人工智能 外科 内科学 计算机科学
作者
B. Rigaud,Brian Anderson,Zhiqian Yu,M. Gobeli,Guillaume Cazoulat,Jonas Söderberg,Elin Samuelsson,David Lidberg,Christopher Ward,Nicolette Taku,Carlos Cárdenas,Dong Joo Rhee,Aradhana M. Venkatesan,Christine B. Peterson,Laurence E. Court,Stina Svensson,Fredrik Löfman,Ann H. Klopp,Kristy K. Brock
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:109 (4): 1096-1110 被引量:53
标识
DOI:10.1016/j.ijrobp.2020.10.038
摘要

This study investigated deep learning models for automatic segmentation to support the development of daily online dose optimization strategies, eliminating the need for internal target volume expansions and thereby reducing toxicity events of intensity modulated radiation therapy for cervical cancer.The cervix-uterus, vagina, parametrium, bladder, rectum, sigmoid, femoral heads, kidneys, spinal cord, and bowel bag were delineated on 408 computed tomography (CT) scans from patients treated at MD Anderson Cancer Center (n = 214), Polyclinique Bordeaux Nord Aquitaine (n = 30), and enrolled in a Medical Image Computing & Computer Assisted Intervention challenge (n = 3). The data were divided into 255 training, 61 validation, 62 internal test, and 30 external test CT scans. Two models were investigated: the 2-dimensional (2D) DeepLabV3+ (Google) and 3-dimensional (3D) Unet in RayStation (RaySearch Laboratories). Three intensity modulated radiation therapy plans were generated on each CT of the internal and external test sets using either the manual, 2D model, or 3D model segmentations. The dose constraints followed the External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer (EMBRACE) II protocol, with reduced margins of 5 and 3 mm for the target and nodal planning target volume. Geometric discrepancies between the manual and predicted contours were assessed using the Dice similarity coefficient (DSC), distance-to-agreement, and Hausdorff distance. Dosimetric discrepancies between the manual and model doses were assessed using clinical indices on the manual contours and the gamma index. Interobserver variability was assessed for the cervix-uterus, parametrium, and vagina for the definition of the primary clinical target volume (CTVT) on the external test set.Average DSCs across all organs were 0.67 to 0.96, 0.71 to 0.97, and 0.42 to 0.92 for the 2D model and 0.66 to 0.96, 0.70 to 0.97, and 0.37 to 0.93 for the 3D model on the validation, internal, and external test sets. Average DSCs of the CTVT were 0.88 and 0.81 for the 2D model and 0.87 and 0.82 for the 3D model on the internal and external test sets. Interobserver variability of the CTVT corresponded to a mean (range) DSC of 0.85 (0.77-0.90) on the external test set. On the internal test set, the doses from the 2D and 3D model contours provided a CTVT V42.75 Gy >98% for 98% and 91% of the CT scans, respectively. On the external test set, these percentages were increased to 100% and 93% for the 2D and 3D models, respectively.The investigated models provided auto-segmentation of the cervix anatomy with similar performances on 2 institutional data sets and reasonable dosimetric accuracies using small planning target volume margins, paving the way to automatic online dose optimization for advanced adaptive radiation therapy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助艾米采纳,获得10
1秒前
求助完成签到 ,获得积分10
1秒前
菠萝吹雪完成签到,获得积分10
2秒前
lisa完成签到,获得积分10
3秒前
Emilia完成签到,获得积分10
4秒前
5秒前
6秒前
孤竹雅弦完成签到,获得积分10
6秒前
7秒前
CC完成签到,获得积分20
7秒前
艾米完成签到,获得积分20
8秒前
开朗的菲鹰完成签到,获得积分10
8秒前
中和皇极应助Valky采纳,获得10
9秒前
tommyliu完成签到,获得积分10
12秒前
xmsswph发布了新的文献求助10
12秒前
12秒前
山鲁佐德爱文献完成签到 ,获得积分10
13秒前
大胆无春发布了新的文献求助10
14秒前
孤独惜海完成签到,获得积分20
14秒前
猪蹄完成签到,获得积分10
15秒前
科目三应助九九九采纳,获得10
15秒前
猪蹄发布了新的文献求助10
19秒前
20秒前
简单的期待完成签到,获得积分10
22秒前
赘婿应助xmsswph采纳,获得10
22秒前
北辰完成签到,获得积分10
25秒前
刘小小完成签到,获得积分20
27秒前
斯文败类应助追寻鸵鸟采纳,获得10
29秒前
29秒前
Lizhiiiy完成签到,获得积分10
30秒前
StarChen发布了新的文献求助30
30秒前
31秒前
32秒前
32秒前
成功发论文完成签到,获得积分10
34秒前
36秒前
36秒前
树欲静而风不止完成签到,获得积分10
37秒前
季秋发布了新的文献求助10
37秒前
研友_ZGR0jn完成签到,获得积分10
39秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700