亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spatial–Spectral Adaptive Haze Removal Method for Visible Remote Sensing Images

薄雾 遥感 基本事实 像素 计算机科学 均方误差 相关系数 高光谱成像 相似性(几何) 环境科学 人工智能 图像(数学) 物理 数学 地质学 气象学 统计 机器学习
作者
Huanfeng Shen,Chi Zhang,Huifang Li,Quan Yuan,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6168-6180 被引量:26
标识
DOI:10.1109/tgrs.2020.2974807
摘要

Visible remotely sensed images usually suffer from the haze, which contaminates the surface radiation and degrades the data quality in both spatial and spectral dimensions. This study proposes a spatial-spectral adaptive haze removal method for visible remote sensing images to resolve spatial and spectral problems. Spatial adaptation is considered from global and local aspects. A globally nonuniform atmospheric light model is constructed to depict spatially varied atmospheric light. Moreover, a bright pixel index is built to extract local bright surfaces for transmission correction. Spectral adaptation is performed by exploring the relationships between image gradients and transmissions among bands to estimate spectrally varied transmission. Visible remote sensing images featuring different land covers and haze distributions were collected for synthetic and real experiments. Accordingly, four haze removal methods were selected for comparison. Visually, the results of the proposed method are completely free from haze and colored naturally in all experiments. These outcomes are nearly the same as the ground truth in the synthetic experiments. Quantitatively, the mean-absolute-error, root-mean-square-error, and spectral angle are the smallest, and the coefficient-of-determination (R 2 ) is the largest among the five methods in the synthetic experiments. R 2 , structural similarity index measure, and the correlation coefficient between the result of the proposed method and the reference image are closest to 1 in the real data experiments. All experimental analyses demonstrate that the proposed method is effective in removing haze and recovering ground information faithfully under different scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
1秒前
852应助宇宙超人007008采纳,获得10
2秒前
onelastkiss完成签到,获得积分10
4秒前
今后应助周亚平采纳,获得10
5秒前
DODO完成签到,获得积分10
7秒前
Owen应助shinn采纳,获得10
9秒前
11秒前
12秒前
壮观大炮完成签到,获得积分10
15秒前
21秒前
25秒前
25秒前
30秒前
shinn发布了新的文献求助10
32秒前
思柔完成签到,获得积分10
34秒前
36秒前
shinn发布了新的文献求助10
36秒前
坚守完成签到 ,获得积分10
42秒前
yjr发布了新的文献求助10
42秒前
43秒前
搞怪的白云完成签到 ,获得积分10
44秒前
江江江完成签到,获得积分20
45秒前
48秒前
52秒前
瑕不掩瑜发布了新的文献求助10
52秒前
英姑应助吉吉采纳,获得10
54秒前
56秒前
莫愁完成签到 ,获得积分10
58秒前
充电宝应助shinn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助发发采纳,获得30
1分钟前
1分钟前
瑕不掩瑜完成签到,获得积分10
1分钟前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112