亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spatial–Spectral Adaptive Haze Removal Method for Visible Remote Sensing Images

薄雾 遥感 基本事实 像素 计算机科学 均方误差 相关系数 高光谱成像 相似性(几何) 环境科学 人工智能 图像(数学) 物理 数学 地质学 气象学 统计 机器学习
作者
Huanfeng Shen,Chi Zhang,Huifang Li,Quan Yuan,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6168-6180 被引量:26
标识
DOI:10.1109/tgrs.2020.2974807
摘要

Visible remotely sensed images usually suffer from the haze, which contaminates the surface radiation and degrades the data quality in both spatial and spectral dimensions. This study proposes a spatial-spectral adaptive haze removal method for visible remote sensing images to resolve spatial and spectral problems. Spatial adaptation is considered from global and local aspects. A globally nonuniform atmospheric light model is constructed to depict spatially varied atmospheric light. Moreover, a bright pixel index is built to extract local bright surfaces for transmission correction. Spectral adaptation is performed by exploring the relationships between image gradients and transmissions among bands to estimate spectrally varied transmission. Visible remote sensing images featuring different land covers and haze distributions were collected for synthetic and real experiments. Accordingly, four haze removal methods were selected for comparison. Visually, the results of the proposed method are completely free from haze and colored naturally in all experiments. These outcomes are nearly the same as the ground truth in the synthetic experiments. Quantitatively, the mean-absolute-error, root-mean-square-error, and spectral angle are the smallest, and the coefficient-of-determination (R 2 ) is the largest among the five methods in the synthetic experiments. R 2 , structural similarity index measure, and the correlation coefficient between the result of the proposed method and the reference image are closest to 1 in the real data experiments. All experimental analyses demonstrate that the proposed method is effective in removing haze and recovering ground information faithfully under different scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
6秒前
Leofar完成签到 ,获得积分10
6秒前
fengyvan完成签到,获得积分10
7秒前
环走鱼尾纹完成签到 ,获得积分10
8秒前
超帅曼柔完成签到,获得积分10
9秒前
方班术完成签到,获得积分10
9秒前
11秒前
方班术发布了新的文献求助10
12秒前
hjmxb完成签到,获得积分10
12秒前
Ava应助平常马里奥采纳,获得10
16秒前
852应助含蓄问安采纳,获得10
17秒前
Z趋势完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
dyp完成签到,获得积分10
26秒前
27秒前
赶紧毕业完成签到,获得积分10
28秒前
29秒前
30秒前
dyp发布了新的文献求助30
31秒前
赶紧毕业发布了新的文献求助10
31秒前
研友_VZG7GZ应助科研进化中采纳,获得10
33秒前
余一台发布了新的文献求助10
34秒前
旨酒欣欣给令宏的求助进行了留言
36秒前
37秒前
大模型应助科研通管家采纳,获得10
38秒前
冷艳玉米完成签到,获得积分10
43秒前
余一台完成签到,获得积分10
48秒前
yyyyyy完成签到,获得积分10
58秒前
缓慢采柳完成签到 ,获得积分10
1分钟前
青阳完成签到,获得积分10
1分钟前
乐乐应助Q123ba叭采纳,获得10
1分钟前
1分钟前
小二郎应助满意的世界采纳,获得10
1分钟前
Q123ba叭发布了新的文献求助10
1分钟前
小胡爱科研完成签到 ,获得积分10
1分钟前
南北完成签到 ,获得积分10
1分钟前
redamancy完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176