A Spatial–Spectral Adaptive Haze Removal Method for Visible Remote Sensing Images

薄雾 遥感 基本事实 像素 计算机科学 均方误差 相关系数 高光谱成像 相似性(几何) 环境科学 人工智能 图像(数学) 物理 数学 地质学 气象学 统计 机器学习
作者
Huanfeng Shen,Chi Zhang,Huifang Li,Quan Yuan,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6168-6180 被引量:26
标识
DOI:10.1109/tgrs.2020.2974807
摘要

Visible remotely sensed images usually suffer from the haze, which contaminates the surface radiation and degrades the data quality in both spatial and spectral dimensions. This study proposes a spatial-spectral adaptive haze removal method for visible remote sensing images to resolve spatial and spectral problems. Spatial adaptation is considered from global and local aspects. A globally nonuniform atmospheric light model is constructed to depict spatially varied atmospheric light. Moreover, a bright pixel index is built to extract local bright surfaces for transmission correction. Spectral adaptation is performed by exploring the relationships between image gradients and transmissions among bands to estimate spectrally varied transmission. Visible remote sensing images featuring different land covers and haze distributions were collected for synthetic and real experiments. Accordingly, four haze removal methods were selected for comparison. Visually, the results of the proposed method are completely free from haze and colored naturally in all experiments. These outcomes are nearly the same as the ground truth in the synthetic experiments. Quantitatively, the mean-absolute-error, root-mean-square-error, and spectral angle are the smallest, and the coefficient-of-determination (R 2 ) is the largest among the five methods in the synthetic experiments. R 2 , structural similarity index measure, and the correlation coefficient between the result of the proposed method and the reference image are closest to 1 in the real data experiments. All experimental analyses demonstrate that the proposed method is effective in removing haze and recovering ground information faithfully under different scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yanjiusheng完成签到,获得积分10
刚刚
喻辰星发布了新的文献求助10
1秒前
orange发布了新的文献求助10
1秒前
orange9发布了新的文献求助10
1秒前
zjl完成签到,获得积分10
2秒前
3秒前
旷野天发布了新的文献求助10
3秒前
华仔应助peter采纳,获得10
4秒前
科研通AI2S应助赫连烙采纳,获得10
4秒前
梦安发布了新的文献求助10
5秒前
5秒前
谢佳冀发布了新的文献求助10
5秒前
多情高丽发布了新的文献求助10
9秒前
10Shi完成签到 ,获得积分10
9秒前
10秒前
小宇宙完成签到,获得积分10
10秒前
汤飞柏发布了新的文献求助10
11秒前
旷野天完成签到,获得积分10
11秒前
all发布了新的文献求助30
14秒前
ice7应助wxyllxx采纳,获得10
15秒前
Kay发布了新的文献求助10
16秒前
情怀应助研友_ndDGVn采纳,获得10
16秒前
17秒前
lcx完成签到,获得积分10
18秒前
18秒前
20秒前
21秒前
lcx发布了新的文献求助10
22秒前
Somnus完成签到 ,获得积分10
23秒前
23秒前
kekao完成签到,获得积分10
23秒前
dcy发布了新的文献求助10
24秒前
李_小_八完成签到,获得积分10
25秒前
希望天下0贩的0应助xcz采纳,获得10
25秒前
李妹妹啦发布了新的文献求助20
25秒前
大模型应助hy采纳,获得10
25秒前
26秒前
26秒前
nihaoya172完成签到,获得积分10
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458