Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助凉笙墨染采纳,获得10
刚刚
JiangHb完成签到,获得积分10
刚刚
憨憨鱼完成签到,获得积分10
1秒前
乔一乔完成签到 ,获得积分10
1秒前
鲤鱼完成签到 ,获得积分10
1秒前
muzi完成签到,获得积分10
2秒前
2秒前
贪玩海之完成签到,获得积分10
2秒前
hkh发布了新的文献求助10
3秒前
腼腆的馒头完成签到,获得积分10
5秒前
大模型应助vinni采纳,获得10
5秒前
紫菜完成签到,获得积分10
5秒前
jinghong完成签到 ,获得积分10
6秒前
ihc完成签到,获得积分10
6秒前
魔幻凡梦完成签到,获得积分10
7秒前
正好完成签到,获得积分10
7秒前
7秒前
8秒前
白白SAMA123完成签到,获得积分10
8秒前
8秒前
大个应助汪爷爷采纳,获得10
9秒前
谷飞飞完成签到,获得积分10
10秒前
11秒前
liu完成签到,获得积分10
11秒前
12秒前
zzz完成签到,获得积分10
13秒前
咸鱼之王完成签到,获得积分10
13秒前
Yuee完成签到,获得积分10
13秒前
咿咿完成签到,获得积分10
13秒前
zzz发布了新的文献求助10
13秒前
亭瞳完成签到,获得积分10
14秒前
14秒前
会发光的星星完成签到,获得积分10
14秒前
14秒前
cyj完成签到 ,获得积分10
14秒前
zhabgyyy完成签到,获得积分10
14秒前
Khalil完成签到 ,获得积分10
15秒前
谦让小蚂蚁完成签到,获得积分10
15秒前
17秒前
思源应助min20210429采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044