Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珍妮完成签到,获得积分10
刚刚
DoLaso完成签到,获得积分10
刚刚
猫小咪完成签到,获得积分10
1秒前
松籽完成签到 ,获得积分10
1秒前
坐井观天的蛙完成签到 ,获得积分10
1秒前
tian完成签到,获得积分10
1秒前
无限的寄真完成签到 ,获得积分10
1秒前
黑粉头头完成签到,获得积分10
2秒前
不愿透露姓名的勇者完成签到,获得积分20
2秒前
lf-leo完成签到,获得积分10
2秒前
暴力熊二完成签到,获得积分10
2秒前
杨lq发布了新的文献求助10
2秒前
2秒前
自觉夜阑完成签到 ,获得积分10
2秒前
2秒前
无心的枫完成签到,获得积分10
3秒前
xf潇洒哥完成签到 ,获得积分10
4秒前
4秒前
123PY完成签到,获得积分10
4秒前
4秒前
闫晓美完成签到,获得积分10
4秒前
饿哭了塞完成签到 ,获得积分10
5秒前
橘子29完成签到,获得积分10
5秒前
HAHA完成签到,获得积分10
5秒前
6秒前
天问完成签到,获得积分10
6秒前
dgd完成签到,获得积分20
6秒前
Oil完成签到,获得积分10
8秒前
8秒前
小饼一定要上岸完成签到,获得积分10
9秒前
CyberHamster完成签到,获得积分0
9秒前
务实的元菱完成签到,获得积分10
9秒前
Lins完成签到,获得积分20
10秒前
彭于晏应助dgd采纳,获得10
10秒前
水文小白完成签到,获得积分10
10秒前
纯情的远山完成签到,获得积分10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
记得吃早饭完成签到 ,获得积分10
11秒前
雨姐科研应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516504
求助须知:如何正确求助?哪些是违规求助? 4609479
关于积分的说明 14515463
捐赠科研通 4546131
什么是DOI,文献DOI怎么找? 2491130
邀请新用户注册赠送积分活动 1472876
关于科研通互助平台的介绍 1444796