Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助不散的和弦采纳,获得10
1秒前
Ting应助狒狒采纳,获得10
3秒前
why发布了新的文献求助10
4秒前
5秒前
liuarise发布了新的文献求助10
5秒前
lz完成签到,获得积分10
6秒前
调研昵称发布了新的文献求助10
10秒前
大个应助大巧若拙采纳,获得10
10秒前
10秒前
清川映叶应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
11秒前
852应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
SIiveryyyy完成签到,获得积分10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
15秒前
Ting应助RNAPW采纳,获得10
17秒前
18秒前
hyl1115发布了新的文献求助10
19秒前
HBUTL发布了新的文献求助10
19秒前
kuangweiming完成签到,获得积分10
20秒前
尊敬乐蕊完成签到,获得积分10
21秒前
大巧若拙发布了新的文献求助10
22秒前
费老五完成签到 ,获得积分10
26秒前
哈哈发布了新的文献求助10
26秒前
27秒前
李健应助WJY采纳,获得10
30秒前
33秒前
万柏祺完成签到,获得积分10
34秒前
奋斗的晓丝完成签到,获得积分10
34秒前
LSY28发布了新的文献求助20
35秒前
37秒前
39秒前
可爱的函函应助哈哈采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358140
求助须知:如何正确求助?哪些是违规求助? 2981312
关于积分的说明 8698638
捐赠科研通 2662919
什么是DOI,文献DOI怎么找? 1458178
科研通“疑难数据库(出版商)”最低求助积分说明 675060
邀请新用户注册赠送积分活动 666078