Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新楚完成签到 ,获得积分10
刚刚
cupid_lu完成签到,获得积分10
刚刚
自由的沛山完成签到,获得积分10
刚刚
alee完成签到,获得积分10
刚刚
sun完成签到,获得积分10
刚刚
keith给keith的求助进行了留言
刚刚
糊涂独尊发布了新的文献求助10
刚刚
熊猫盖浇饭完成签到,获得积分10
1秒前
迎南完成签到,获得积分10
1秒前
kkb123完成签到,获得积分20
1秒前
古风欧关注了科研通微信公众号
1秒前
张惠兰完成签到,获得积分10
1秒前
2秒前
泡泡完成签到,获得积分10
2秒前
para_团结完成签到,获得积分10
2秒前
自觉匪完成签到 ,获得积分10
2秒前
2秒前
leisurelft完成签到 ,获得积分10
3秒前
MENGQi完成签到,获得积分10
3秒前
Chris完成签到,获得积分10
4秒前
刘明坤完成签到 ,获得积分10
4秒前
5秒前
夏天不回来完成签到,获得积分10
5秒前
木南完成签到 ,获得积分10
5秒前
Feegood完成签到,获得积分10
6秒前
HXX19完成签到 ,获得积分10
6秒前
sh完成签到 ,获得积分10
6秒前
FiiFii完成签到,获得积分10
7秒前
Ava应助panxixiang采纳,获得10
7秒前
8秒前
syt128发布了新的文献求助10
8秒前
liuqizong123完成签到,获得积分10
8秒前
18746005898完成签到 ,获得积分10
8秒前
ssxw发布了新的文献求助10
9秒前
HNDuan完成签到 ,获得积分10
9秒前
Lucas应助忘崽子小拳头采纳,获得10
9秒前
9秒前
李蔚然发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269562
求助须知:如何正确求助?哪些是违规求助? 4427995
关于积分的说明 13781921
捐赠科研通 4305390
什么是DOI,文献DOI怎么找? 2362762
邀请新用户注册赠送积分活动 1358427
关于科研通互助平台的介绍 1321122