Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运来完成签到 ,获得积分10
刚刚
刚刚
负责天问完成签到,获得积分10
刚刚
科研通AI6应助qingzhou采纳,获得100
1秒前
cyndi发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
kbc发布了新的文献求助10
2秒前
脑洞疼应助LMX采纳,获得10
3秒前
3秒前
Rain完成签到,获得积分10
3秒前
wwy应助keyan采纳,获得10
3秒前
Jasper应助清雅采纳,获得20
3秒前
beiwei完成签到 ,获得积分10
4秒前
领导范儿应助勤恳的灵雁采纳,获得10
5秒前
nczpf2010发布了新的文献求助10
5秒前
5秒前
asstman发布了新的文献求助10
5秒前
5秒前
5秒前
笨蛋搞笑女完成签到 ,获得积分10
5秒前
龘龘发布了新的文献求助50
6秒前
Tom发布了新的文献求助10
6秒前
6秒前
kkr完成签到,获得积分10
6秒前
今天看了几篇关注了科研通微信公众号
6秒前
6秒前
XIAONIE25发布了新的文献求助10
7秒前
7秒前
Orange应助jianwenhao采纳,获得10
7秒前
lyh发布了新的文献求助10
8秒前
8秒前
mouxq发布了新的文献求助10
8秒前
9秒前
科研通AI6应助嘻嘻采纳,获得10
9秒前
LiM完成签到,获得积分10
9秒前
希望天下0贩的0应助kkr采纳,获得10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285