Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities

医学 肺栓塞 放射科 置信区间 回顾性队列研究 核医学 外科 内科学
作者
Benjamin Wildman‐Tobriner,Lawrence Ngo,Joseph G. Mammarappallil,Brandon Konkel,Jacob A. Johnson,Mustafa R. Bashir
出处
期刊:Journal of The American College of Radiology [Elsevier]
卷期号:18 (7): 992-999 被引量:11
标识
DOI:10.1016/j.jacr.2021.01.014
摘要

Purpose Incidental pulmonary embolism (IPE) can be found on body CT. The aim of this study was to evaluate the feasibility of using artificial intelligence to identify missed IPE on a large number of CT examinations. Methods This retrospective analysis included all single-phase chest, abdominal, and pelvic (CAP) and abdominal and pelvic (AP) CT examinations performed at a single center over 1 year, for indications other than identification of PE. Proprietary visual classification and natural language processing software was used to analyze images and reports from all CT examinations, followed by a two-step human adjudication process to classify cases as true positive, false positive, true negative, or false negative. Descriptive statistics were assessed for prevalence of IPE and features (subsegmental versus central, unifocal versus multifocal, right heart strain or not) of missed IPE. Interrater agreement for radiologist readers was also calculated. Results A total of 11,913 CT examinations (6,398 CAP, 5,515 AP) were included. Thirty false-negative examinations were identified on CAP (0.47%; 95% confidence interval [CI], 0.32%-0.67%) and nineteen false-negative studies on AP (0.34%; 95% CI, 0.21%-0.54%) studies. During manual review, readers showed substantial agreement for identification of IPE on CAP (κ = 0.76; 95% CI, 0.66-0.86) and nearly perfect agreement for identification of IPE on AP (κ = 0.86; 95% CI, 0.76-0.97). Forty-nine missed IPEs (0.41%; 95% CI, 0.30%-0.54%) were ultimately identified, compared with seventy-nine IPEs (0.66%; 95% CI, 0.53%-0.83%) identified at initial clinical interpretation. Conclusions Artificial intelligence can efficiently analyze CT examinations to identify potential missed IPE. These results can inform peer-review efforts and quality control and could potentially be implemented in a prospective fashion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
刚刚
小鲤鱼本鱼完成签到,获得积分10
1秒前
2秒前
Lxl1124发布了新的文献求助200
2秒前
Yuki酱完成签到,获得积分10
3秒前
3秒前
4秒前
乐乐应助嗷嗷嗷采纳,获得10
5秒前
Xu完成签到,获得积分10
5秒前
啦啦啦发布了新的文献求助10
5秒前
木土完成签到 ,获得积分10
6秒前
JamesPei应助小鲤鱼本鱼采纳,获得10
6秒前
Criminology34应助GUOGUO采纳,获得10
6秒前
北张发布了新的文献求助10
6秒前
SciGPT应助无限魔镜采纳,获得10
7秒前
7秒前
阔达海雪完成签到,获得积分10
7秒前
阔达的小海豚完成签到,获得积分10
8秒前
stiger应助sinsinsin采纳,获得10
8秒前
8秒前
神烦狗完成签到 ,获得积分10
9秒前
清见的心完成签到,获得积分10
9秒前
小兔子乖乖完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
王为云发布了新的文献求助10
11秒前
情怀应助悠悠夏日长采纳,获得10
12秒前
平淡过客完成签到,获得积分10
12秒前
Owen应助卤化氢采纳,获得10
12秒前
情怀应助好运藏在善良里采纳,获得10
12秒前
12秒前
冬日发布了新的文献求助10
14秒前
insane发布了新的文献求助10
14秒前
45321完成签到,获得积分10
15秒前
胖头鱼完成签到,获得积分20
15秒前
15秒前
英勇雅琴完成签到 ,获得积分10
16秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693462
求助须知:如何正确求助?哪些是违规求助? 5093130
关于积分的说明 15211816
捐赠科研通 4850452
什么是DOI,文献DOI怎么找? 2601739
邀请新用户注册赠送积分活动 1553549
关于科研通互助平台的介绍 1511540