热固性聚合物
环氧树脂
固化(化学)
咪唑
羧酸盐
材料科学
高分子化学
复合材料
缩水甘油醚
差示扫描量热法
氰酸酯
玻璃化转变
聚合物
热重分析
热稳定性
有机化学
化学
作者
Xin Sun,Yiming Wang,Yuyao Tang,Bowen Zhang,Wei Wei,Xiaojie Li,Xiaoma Fei,Xiaoya Liu
摘要
A novel thermal latent curing accelerator, 1-(2-cyanoethyl)-2-methylimidazole/tris (2-carboxyethyl) isocyanurate adduct (2MICN-T), was successfully synthesized through an acid–base neutralization of tris(2-carboxyethyl)isocyanurate (TCEIC) and 1-(2-cyanoethyl)-2-methylimidazole (2MICN). It was further added into diglycidylether of bisphenol A based epoxy resin/methylhexahydrophthalic anhydride mixture to form one-component curing systems. With the addition of 2 wt% of 2MICN-T, the one-component system could be steadily stored for more than 1 month at room temperature, while the shelf life of 2MICN curing system was only 2 days. Nonisothermal differential scanning calorimeter also demonstrated the excellent thermal latency of 2MICN-T in low-temperature region and rapid initiation of the curing reaction when raising temperature. Compared to the cured resins with original 2MICN as accelerator, the resulted thermosets exhibited enhanced glassy storage modulus, glass transition temperature, and thermal stability when 2 wt% of 2MICN-T was applied. It was attributed to the chemical incorporation of the isocyanurate moieties with multi carboxyl groups and nitrogen-contained heterocyclic ring, effectively increasing the crosslinking density, chain rigidity, and heat resistance of the cured resin. Thus, it is suggested that 2MICN-T can play both roles as latent curing accelerator and modifier for one-component epoxy compounds, and is particularly recommended for application in electronic packaging fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI