金黄色葡萄球菌
特应性皮炎
斯科拉德
经皮失水
微生物群
失调
医学
葡萄球菌皮肤感染
皮肤病科
过敏
免疫学
湿疹面积及严重程度指数
皮肤感染
内科学
过敏性
银屑病
疾病
病理
生物
细菌
生物信息学
遗传学
角质层
皮肤科生活质量指数
作者
Claudia Hülpüsch,Karolina Tremmel,Gertrud Hammel,Madhumita Bhattacharyya,A. De Tomassi,Thomas Nußbaumer,Avidan U. Neumann,Matthias Reiger,Claudia Traidl‐Hoffmann
出处
期刊:Allergy
[Wiley]
日期:2020-07-06
卷期号:75 (11): 2888-2898
被引量:40
摘要
Atopic eczema (atopic dermatitis, AD) is characterized by disrupted skin barrier associated with elevated skin pH and skin microbiome dysbiosis, due to high Staphylococcus aureus loads, especially during flares. Since S aureus shows optimal growth at neutral pH, we investigated the longitudinal interplay between these factors and AD severity in a pilot study.Emollient (with either basic pH 8.5 or pH 5.5) was applied double-blinded twice daily to 6 AD patients and 6 healthy (HE) controls for 8 weeks. Weekly, skin swabs for microbiome analysis (deep sequencing) were taken, AD severity was assessed, and skin physiology (pH, hydration, transepidermal water loss) was measured.Physiological, microbiome, and clinical results were not robustly related to the pH of applied emollient. In contrast to longitudinally stable microbiome in HE, S aureus frequency significantly increased in AD over 8 weeks. High S aureus abundance was associated with skin pH 5.7-6.2. High baseline S aureus frequency predicted both increase in S aureus and in AD severity (EASI and local SCORAD) after 8 weeks.Skin pH is tightly regulated by intrinsic factors and limits the abundance of S aureus. High baseline S aureus abundance in turn predicts an increase in AD severity over the study period. This underlines the importance and potential of sustained intervention regarding the skin pH and urges for larger studies linking skin pH and skin S aureus abundance to understand driving factors of disease progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI