Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis

计算机科学 深度学习 噪音(视频) 人工智能 机器学习 领域(数学分析) 医学影像学 图像(数学) 数据科学 数学 数学分析
作者
Davood Karimi,Haoran Dou,Simon K. Warfield,Ali Gholipour
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:65: 101759-101759 被引量:450
标识
DOI:10.1016/j.media.2020.101759
摘要

Supervised training of deep learning models requires large labeled datasets. There is a growing interest in obtaining such datasets for medical image analysis applications. However, the impact of label noise has not received sufficient attention. Recent studies have shown that label noise can significantly impact the performance of deep learning models in many machine learning and computer vision applications. This is especially concerning for medical applications, where datasets are typically small, labeling requires domain expertise and suffers from high inter- and intra-observer variability, and erroneous predictions may influence decisions that directly impact human health. In this paper, we first review the state-of-the-art in handling label noise in deep learning. Then, we review studies that have dealt with label noise in deep learning for medical image analysis. Our review shows that recent progress on handling label noise in deep learning has gone largely unnoticed by the medical image analysis community. To help achieve a better understanding of the extent of the problem and its potential remedies, we conducted experiments with three medical imaging datasets with different types of label noise, where we investigated several existing strategies and developed new methods to combat the negative effect of label noise. Based on the results of these experiments and our review of the literature, we have made recommendations on methods that can be used to alleviate the effects of different types of label noise on deep models trained for medical image analysis. We hope that this article helps the medical image analysis researchers and developers in choosing and devising new techniques that effectively handle label noise in deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然沁完成签到,获得积分10
刚刚
2秒前
2秒前
机灵的千琴完成签到,获得积分10
3秒前
4秒前
炒栗子发布了新的文献求助80
8秒前
8秒前
BK1BK22发布了新的文献求助10
9秒前
chaning完成签到,获得积分10
11秒前
领导范儿应助任梓宁采纳,获得10
14秒前
CipherSage应助停停走走采纳,获得10
15秒前
四夕水窖完成签到,获得积分10
15秒前
15秒前
15秒前
瑾年发布了新的文献求助10
15秒前
xiao完成签到,获得积分20
16秒前
16秒前
龙虾发票完成签到,获得积分10
16秒前
20秒前
20秒前
saber_lancer完成签到,获得积分10
21秒前
ding应助炒栗子采纳,获得10
24秒前
任梓宁发布了新的文献求助10
25秒前
sj完成签到,获得积分10
26秒前
28秒前
CyberHamster完成签到,获得积分10
29秒前
29秒前
洁白的故人完成签到 ,获得积分10
29秒前
脑洞疼应助CY采纳,获得10
30秒前
鄢廷芮发布了新的文献求助10
32秒前
nini完成签到,获得积分10
33秒前
沉默的阁发布了新的文献求助20
33秒前
思源应助斑鸠采纳,获得10
35秒前
在水一方应助不爱干饭采纳,获得30
39秒前
41秒前
开朗万天发布了新的文献求助10
41秒前
橘砸完成签到 ,获得积分10
41秒前
43秒前
44秒前
咪路完成签到,获得积分10
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140593
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798857
捐赠科研通 2447772
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194