MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助严西采纳,获得10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
ASDq发布了新的文献求助10
3秒前
拉拉发布了新的文献求助10
3秒前
李大姐发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
勤奋的小伙完成签到,获得积分10
4秒前
4秒前
科研通AI6.1应助Yely采纳,获得10
4秒前
研友_VZG7GZ应助平淡菠萝采纳,获得10
4秒前
离郢完成签到 ,获得积分10
5秒前
5秒前
太阳雨发布了新的文献求助10
5秒前
lllllll完成签到,获得积分10
6秒前
117完成签到 ,获得积分10
6秒前
HOPE完成签到,获得积分10
7秒前
tttt发布了新的文献求助10
7秒前
7秒前
kk发布了新的文献求助10
7秒前
wanci应助若即若离采纳,获得10
7秒前
8秒前
吉吉国王饲养员完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助10
8秒前
酵母君完成签到,获得积分10
9秒前
YZ完成签到,获得积分10
9秒前
BowieHuang应助拉拉采纳,获得10
9秒前
6666应助拉拉采纳,获得10
9秒前
9秒前
imp发布了新的文献求助10
9秒前
轻风完成签到,获得积分20
10秒前
10秒前
大意的罡发布了新的文献求助10
10秒前
Tyw发布了新的文献求助10
11秒前
诚心熊猫完成签到,获得积分10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214