MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
caoyy发布了新的文献求助10
1秒前
2秒前
3秒前
斗图不怕输完成签到,获得积分10
5秒前
aikeyan完成签到,获得积分10
6秒前
imaginehdxy发布了新的文献求助10
7秒前
派大星完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
12秒前
14秒前
脑洞疼应助阳阳采纳,获得10
17秒前
专注秋尽发布了新的文献求助10
18秒前
20秒前
默默的棒棒糖完成签到 ,获得积分10
22秒前
22秒前
SONG关注了科研通微信公众号
22秒前
23秒前
ding应助呆头采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
sutharsons应助科研通管家采纳,获得30
23秒前
axin应助科研通管家采纳,获得10
23秒前
terence应助科研通管家采纳,获得30
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
sutharsons应助科研通管家采纳,获得30
23秒前
852应助科研通管家采纳,获得10
23秒前
hh应助科研通管家采纳,获得10
23秒前
sun发布了新的文献求助10
24秒前
24秒前
zhu完成签到,获得积分10
24秒前
酷波er应助缚大哥采纳,获得10
25秒前
李健应助明理雨筠采纳,获得10
25秒前
wang发布了新的文献求助10
27秒前
木头人给step_stone的求助进行了留言
27秒前
魏伯安完成签到,获得积分10
28秒前
朴素尔岚发布了新的文献求助10
29秒前
科研通AI5应助nextconnie采纳,获得10
29秒前
务实的犀牛完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849