亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
彭于晏应助豆都采纳,获得10
1秒前
1秒前
浮游应助灵巧的大开采纳,获得10
4秒前
浮游应助灵巧的大开采纳,获得10
4秒前
我是老大应助灵巧的大开采纳,获得10
4秒前
8秒前
9秒前
时间尘埃完成签到,获得积分10
12秒前
12秒前
柳贯一发布了新的文献求助100
13秒前
16秒前
叶千山完成签到 ,获得积分10
17秒前
20秒前
20秒前
11122发布了新的文献求助10
20秒前
20秒前
婉莹完成签到 ,获得积分0
24秒前
温暖水云发布了新的文献求助10
25秒前
25秒前
28秒前
11122发布了新的文献求助10
30秒前
Kristopher完成签到 ,获得积分10
31秒前
情怀应助王佳俊采纳,获得10
32秒前
32秒前
汉堡包应助tdtk采纳,获得10
36秒前
Cast_Lappland发布了新的文献求助10
38秒前
42秒前
43秒前
王佳俊发布了新的文献求助10
47秒前
hankongli完成签到 ,获得积分10
47秒前
48秒前
沐阳完成签到 ,获得积分10
57秒前
王佳俊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
壹玖一陆完成签到,获得积分20
1分钟前
1分钟前
1分钟前
豆都发布了新的文献求助10
1分钟前
耳东陈完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490