MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy完成签到 ,获得积分10
1秒前
3秒前
靓丽傀斗发布了新的文献求助10
5秒前
6秒前
8秒前
高贵的惠完成签到,获得积分10
10秒前
爱吃鱼的猫猫完成签到 ,获得积分10
12秒前
13秒前
ChenYX发布了新的文献求助10
14秒前
c445507405完成签到 ,获得积分10
15秒前
16秒前
科研通AI6应助小徐采纳,获得10
17秒前
YEZQ发布了新的文献求助10
17秒前
乐观的颦发布了新的文献求助10
18秒前
阿秋秋秋完成签到 ,获得积分10
18秒前
19秒前
nxdsk完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助图图采纳,获得10
20秒前
张11发布了新的文献求助10
21秒前
21秒前
21秒前
Owen应助guoy郭莹采纳,获得10
23秒前
24秒前
靓丽傀斗完成签到,获得积分10
24秒前
daggeraxe完成签到 ,获得积分10
25秒前
26秒前
救驾来迟完成签到,获得积分10
26秒前
zhu发布了新的文献求助10
30秒前
zhu发布了新的文献求助10
30秒前
科研通AI6应助王博林采纳,获得10
30秒前
三三完成签到 ,获得积分10
33秒前
淡然葶完成签到 ,获得积分10
35秒前
35秒前
研0种牛马发布了新的文献求助10
37秒前
37秒前
38秒前
dreamfox完成签到,获得积分10
38秒前
端庄的如花完成签到 ,获得积分10
39秒前
karstbing发布了新的文献求助30
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478