MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助喵喵采纳,获得10
1秒前
胡慧婷完成签到 ,获得积分10
1秒前
李健的小迷弟应助喵喵采纳,获得10
1秒前
完美世界应助喵喵采纳,获得10
1秒前
脑洞疼应助喵喵采纳,获得10
1秒前
嫁接诺贝尔应助喵喵采纳,获得10
1秒前
科研通AI6应助喵喵采纳,获得10
1秒前
小二郎应助喵喵采纳,获得10
1秒前
田様应助喵喵采纳,获得30
1秒前
Orange应助喵喵采纳,获得10
1秒前
丘比特应助喵喵采纳,获得10
1秒前
尘默完成签到,获得积分10
2秒前
2秒前
123发布了新的文献求助10
3秒前
4秒前
Zhuyin发布了新的文献求助30
4秒前
赘婿应助苛帅采纳,获得10
5秒前
研友_wZr5Rn完成签到,获得积分10
6秒前
6秒前
汉堡包应助zh1858f采纳,获得10
6秒前
扶桑发布了新的文献求助10
8秒前
ranj发布了新的文献求助10
8秒前
10秒前
X_X发布了新的文献求助10
10秒前
天天快乐应助小吉麻麻采纳,获得10
10秒前
10秒前
10秒前
lily发布了新的文献求助10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
orixero应助喵喵采纳,获得10
11秒前
搜集达人应助喵喵采纳,获得10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
天天快乐应助喵喵采纳,获得10
11秒前
Ava应助喵喵采纳,获得10
11秒前
桐桐应助喵喵采纳,获得10
11秒前
大模型应助喵喵采纳,获得10
11秒前
星辰大海应助喵喵采纳,获得10
11秒前
11秒前
宋温暖应助wuran采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367