MultiPredGO: Deep Multi-Modal Protein Function Prediction by Amalgamating Protein Structure, Sequence, and Interaction Information

蛋白质功能预测 计算机科学 人工智能 序列(生物学) 蛋白质结构预测 卷积神经网络 代表(政治) 机器学习 功能(生物学) 模式识别(心理学) 数据挖掘 蛋白质结构 蛋白质功能 生物 政治 法学 基因 进化生物学 生物化学 遗传学 政治学
作者
Swagarika Jaharlal Giri,Pratik Dutta,Parth Halani,Sriparna Saha
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1832-1838 被引量:36
标识
DOI:10.1109/jbhi.2020.3022806
摘要

Protein is an essential macro-nutrient for perceiving a wide range of biochemical activities and biological regulations in living cells. In this work, we have presented a novel multi-modal approach, named MultiPredGO, for predicting protein functions by utilizing two different kinds of information, namely protein sequence and the protein secondary structure. Here, our contributions are threefold; firstly, along with the protein sequence, we learn the feature representation from the protein structure. Secondly, we develop two different deep learning models after considering the characteristics of the underlying data patterns of the protein sequence and protein 3D structures. Finally, along with these two modalities, we have also utilized protein interaction information for expediting the efficiency of the proposed model in predicting the protein functions. For extracting features from different modalities, we have utilized various variations of the convolutional neural network. As the protein function classes are dependent on each other, we have used a neuro-symbolic hierarchical classification model, which resembles the structure of Gene Ontology (GO), for effectively predicting the dependent protein functions. Finally, to validate the goodness of our proposed method (MultiPredGO), we have compared our results with various uni-modal along with two well-known multi-modal protein function prediction approaches, namely, INGA and DeepGO. Results show that the overall performance of the proposed approach in terms of accuracy, F-measure, precision, and recall metrics are better than those by the state-of-the-art methods. MultiPredGO attains an average 13.05% and 30.87% improvements over the best existing comparing approach (DeepGO) for cellular component and molecular functions, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残剑月发布了新的文献求助10
刚刚
科研通AI6应助li采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
云猩猩发布了新的文献求助10
2秒前
SGI完成签到,获得积分10
3秒前
西一兮完成签到,获得积分10
5秒前
fy完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
溜溜梅发布了新的文献求助10
7秒前
温暖眼神完成签到,获得积分10
8秒前
8秒前
10秒前
nnmmuu发布了新的文献求助10
11秒前
11秒前
liyuqin完成签到,获得积分20
11秒前
求助人员发布了新的文献求助10
12秒前
12秒前
14秒前
面包战士发布了新的文献求助10
14秒前
归海凡儿完成签到,获得积分10
14秒前
orixero应助zzcres采纳,获得10
15秒前
上官若男应助溜溜梅采纳,获得10
16秒前
Lucas应助正正采纳,获得10
17秒前
赫不斜给赫不斜的求助进行了留言
18秒前
踏实的惋庭完成签到,获得积分10
18秒前
漂流hane完成签到,获得积分10
19秒前
落后的夜阑完成签到,获得积分10
21秒前
研友_VZG7GZ应助蓝草采纳,获得10
21秒前
Freesia完成签到,获得积分10
22秒前
22秒前
一步之遥完成签到,获得积分10
23秒前
SciGPT应助易水寒采纳,获得30
24秒前
唠叨的向日葵完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613393
求助须知:如何正确求助?哪些是违规求助? 4698608
关于积分的说明 14898233
捐赠科研通 4736102
什么是DOI,文献DOI怎么找? 2547006
邀请新用户注册赠送积分活动 1510998
关于科研通互助平台的介绍 1473546