Behavior modes, pathways and overall trajectories: eigenvector and eigenvalue analysis of dynamic systems

特征向量 弹道 职位(财务) 数学 变量(数学) 控制理论(社会学) 计算机科学 应用数学 物理 数学分析 人工智能 经济 天文 财务 量子力学 控制(管理)
作者
Paulo Gonçalves
出处
期刊:System Dynamics Review [Wiley]
卷期号:25 (1): 35-62 被引量:40
标识
DOI:10.1002/sdr.414
摘要

Abstract One of the most fundamental principles in system dynamics is the premise that the structure of the system will generate its behavior. Such a philosophical position has fostered the development of a number of formal methods aimed at understanding the causes of model behavior. Behavior, to most in the field of system dynamics, is commonly interpreted as modes of behavior (e.g., exponential growth, exponential decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on formal model analysis has emphasized which loops cause a particular “mode” of behavior, with eigenvalues representing the most important link between structure and behavior. The main contribution of this work arises from a choice to focus our analysis on the overall trajectory of a state variable, instead of only a specific behavior mode. Since the overall behavior trajectory of state variable x i ( t ) is determined by a linear combination of the product of eigenvector components ( r ji ) and behavior modes ( $e^{l_jt}$ ) generated by eigenvalues ( λ j ), contributions from both eigenvalues and eigenvectors are important. By studying how the overall trajectory changes due to changes in link (or loop) gains, we observe that the derivatives of eigenvectors are more closely associated with the short‐term transient impact of those changes, whereas derivatives of eigenvalues are associated with the long‐term impact. Since we care deeply about both the short‐ and the long‐term impact of those changes, there is value in looking at the contributions from both eigenvalues and eigenvectors . Copyright © 2009 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jerryluo发布了新的文献求助30
1秒前
luyuhao3应助wyx采纳,获得10
1秒前
aoao嘉完成签到,获得积分10
1秒前
深情安青应助77采纳,获得10
1秒前
Billy应助Cong采纳,获得30
2秒前
共享精神应助健壮雨兰采纳,获得10
2秒前
解泽星完成签到,获得积分10
3秒前
RUINNNO完成签到 ,获得积分10
3秒前
COCO发布了新的文献求助10
4秒前
6秒前
liffchao应助chen采纳,获得10
6秒前
iVANPENNY应助奶昔采纳,获得10
7秒前
7秒前
xubee完成签到,获得积分10
8秒前
简单果汁完成签到,获得积分10
8秒前
霸气紫文应助木可南采纳,获得10
9秒前
cocolu应助dddy采纳,获得10
9秒前
11秒前
12秒前
Singularity应助超级忆雪采纳,获得10
13秒前
体贴花卷发布了新的文献求助10
13秒前
万能图书馆应助朗源Wu采纳,获得10
14秒前
15秒前
星星发布了新的文献求助10
15秒前
huangdy发布了新的文献求助10
16秒前
zj发布了新的文献求助10
16秒前
顺毕完成签到,获得积分10
17秒前
松鼠叶发布了新的文献求助50
18秒前
我是微风完成签到,获得积分10
18秒前
俏皮妙海关注了科研通微信公众号
18秒前
19秒前
Owen应助yier采纳,获得10
19秒前
今后应助典雅的俊驰采纳,获得10
20秒前
20秒前
21秒前
FashionBoy应助刻苦的黑米采纳,获得10
21秒前
等等完成签到,获得积分10
22秒前
科研通AI2S应助喜悦酸奶采纳,获得10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255