Behavior modes, pathways and overall trajectories: eigenvector and eigenvalue analysis of dynamic systems

特征向量 弹道 职位(财务) 数学 变量(数学) 控制理论(社会学) 计算机科学 应用数学 物理 数学分析 人工智能 经济 天文 财务 量子力学 控制(管理)
作者
Paulo Gonçalves
出处
期刊:System Dynamics Review [Wiley]
卷期号:25 (1): 35-62 被引量:40
标识
DOI:10.1002/sdr.414
摘要

Abstract One of the most fundamental principles in system dynamics is the premise that the structure of the system will generate its behavior. Such a philosophical position has fostered the development of a number of formal methods aimed at understanding the causes of model behavior. Behavior, to most in the field of system dynamics, is commonly interpreted as modes of behavior (e.g., exponential growth, exponential decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on formal model analysis has emphasized which loops cause a particular “mode” of behavior, with eigenvalues representing the most important link between structure and behavior. The main contribution of this work arises from a choice to focus our analysis on the overall trajectory of a state variable, instead of only a specific behavior mode. Since the overall behavior trajectory of state variable x i ( t ) is determined by a linear combination of the product of eigenvector components ( r ji ) and behavior modes ( $e^{l_jt}$ ) generated by eigenvalues ( λ j ), contributions from both eigenvalues and eigenvectors are important. By studying how the overall trajectory changes due to changes in link (or loop) gains, we observe that the derivatives of eigenvectors are more closely associated with the short‐term transient impact of those changes, whereas derivatives of eigenvalues are associated with the long‐term impact. Since we care deeply about both the short‐ and the long‐term impact of those changes, there is value in looking at the contributions from both eigenvalues and eigenvectors . Copyright © 2009 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风雨1210完成签到,获得积分10
刚刚
抗压兔完成签到 ,获得积分10
刚刚
chillin发布了新的文献求助10
刚刚
阳尧发布了新的文献求助10
1秒前
天天快乐应助troubadourelf采纳,获得10
1秒前
勤恳慕蕊发布了新的文献求助10
2秒前
2秒前
kxy完成签到,获得积分10
5秒前
5秒前
婧婧完成签到 ,获得积分10
5秒前
6秒前
7秒前
左友铭完成签到 ,获得积分10
7秒前
sweetbearm应助通~采纳,获得10
7秒前
AKLIZE完成签到,获得积分10
7秒前
刘大妮完成签到,获得积分10
8秒前
clean完成签到,获得积分20
9秒前
Lucas发布了新的文献求助10
9秒前
9秒前
朴实以松发布了新的文献求助10
9秒前
感谢橘子转发科研通微信,获得积分50
9秒前
围炉煮茶完成签到,获得积分10
10秒前
10秒前
云锋发布了新的文献求助10
11秒前
兴奋的问旋应助务实盼海采纳,获得10
11秒前
李秋静发布了新的文献求助10
11秒前
11秒前
无花果应助cookie采纳,获得10
12秒前
12秒前
斯文败类应助阳尧采纳,获得10
12秒前
13秒前
13秒前
abjz完成签到,获得积分10
13秒前
三千弱水为君饮完成签到,获得积分10
14秒前
14秒前
cata完成签到,获得积分10
14秒前
感谢79转发科研通微信,获得积分50
14秒前
14秒前
troubadourelf发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794