Behavior modes, pathways and overall trajectories: eigenvector and eigenvalue analysis of dynamic systems

特征向量 弹道 职位(财务) 数学 变量(数学) 控制理论(社会学) 计算机科学 应用数学 物理 数学分析 人工智能 经济 天文 财务 量子力学 控制(管理)
作者
Paulo Gonçalves
出处
期刊:System Dynamics Review [Wiley]
卷期号:25 (1): 35-62 被引量:40
标识
DOI:10.1002/sdr.414
摘要

Abstract One of the most fundamental principles in system dynamics is the premise that the structure of the system will generate its behavior. Such a philosophical position has fostered the development of a number of formal methods aimed at understanding the causes of model behavior. Behavior, to most in the field of system dynamics, is commonly interpreted as modes of behavior (e.g., exponential growth, exponential decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on formal model analysis has emphasized which loops cause a particular “mode” of behavior, with eigenvalues representing the most important link between structure and behavior. The main contribution of this work arises from a choice to focus our analysis on the overall trajectory of a state variable, instead of only a specific behavior mode. Since the overall behavior trajectory of state variable x i ( t ) is determined by a linear combination of the product of eigenvector components ( r ji ) and behavior modes ( $e^{l_jt}$ ) generated by eigenvalues ( λ j ), contributions from both eigenvalues and eigenvectors are important. By studying how the overall trajectory changes due to changes in link (or loop) gains, we observe that the derivatives of eigenvectors are more closely associated with the short‐term transient impact of those changes, whereas derivatives of eigenvalues are associated with the long‐term impact. Since we care deeply about both the short‐ and the long‐term impact of those changes, there is value in looking at the contributions from both eigenvalues and eigenvectors . Copyright © 2009 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwer1234完成签到,获得积分10
1秒前
zts发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
YMing发布了新的文献求助10
2秒前
THM完成签到,获得积分10
2秒前
2秒前
3秒前
seventhcat完成签到,获得积分10
3秒前
4秒前
缓慢冬莲完成签到,获得积分10
4秒前
lit完成签到 ,获得积分10
4秒前
幽幽完成签到,获得积分10
4秒前
4秒前
小龙发布了新的文献求助10
4秒前
WR发布了新的文献求助10
5秒前
fhghhhjh发布了新的文献求助10
6秒前
脑洞疼应助老实的百招采纳,获得10
6秒前
慎独579完成签到,获得积分10
7秒前
牛奶草莓发布了新的文献求助10
7秒前
上官若男应助Jzag采纳,获得10
8秒前
干净凝梦发布了新的文献求助10
8秒前
酷波er应助十七采纳,获得10
8秒前
YMing完成签到,获得积分10
9秒前
靓丽安萱发布了新的文献求助10
9秒前
24p0发布了新的文献求助10
9秒前
坚定冰菱发布了新的文献求助10
9秒前
燧人氏完成签到,获得积分10
10秒前
大方元风发布了新的文献求助10
10秒前
浮游应助张宝采纳,获得10
12秒前
爆米花应助中中采纳,获得10
14秒前
十七完成签到 ,获得积分10
14秒前
15秒前
巴豆醇完成签到 ,获得积分10
16秒前
小蘑菇应助热情的白风采纳,获得10
18秒前
24p0完成签到,获得积分20
18秒前
19秒前
yongji完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403