Behavior modes, pathways and overall trajectories: eigenvector and eigenvalue analysis of dynamic systems

特征向量 弹道 职位(财务) 数学 变量(数学) 控制理论(社会学) 计算机科学 应用数学 物理 数学分析 人工智能 经济 天文 财务 量子力学 控制(管理)
作者
Paulo Gonçalves
出处
期刊:System Dynamics Review [Wiley]
卷期号:25 (1): 35-62 被引量:40
标识
DOI:10.1002/sdr.414
摘要

Abstract One of the most fundamental principles in system dynamics is the premise that the structure of the system will generate its behavior. Such a philosophical position has fostered the development of a number of formal methods aimed at understanding the causes of model behavior. Behavior, to most in the field of system dynamics, is commonly interpreted as modes of behavior (e.g., exponential growth, exponential decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on formal model analysis has emphasized which loops cause a particular “mode” of behavior, with eigenvalues representing the most important link between structure and behavior. The main contribution of this work arises from a choice to focus our analysis on the overall trajectory of a state variable, instead of only a specific behavior mode. Since the overall behavior trajectory of state variable x i ( t ) is determined by a linear combination of the product of eigenvector components ( r ji ) and behavior modes ( $e^{l_jt}$ ) generated by eigenvalues ( λ j ), contributions from both eigenvalues and eigenvectors are important. By studying how the overall trajectory changes due to changes in link (or loop) gains, we observe that the derivatives of eigenvectors are more closely associated with the short‐term transient impact of those changes, whereas derivatives of eigenvalues are associated with the long‐term impact. Since we care deeply about both the short‐ and the long‐term impact of those changes, there is value in looking at the contributions from both eigenvalues and eigenvectors . Copyright © 2009 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yznfly应助Rico采纳,获得30
2秒前
WangYF2025完成签到 ,获得积分10
3秒前
3秒前
dd完成签到,获得积分20
4秒前
下次一定发布了新的文献求助10
4秒前
4秒前
小李发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
热情的远锋完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
Hello应助西瓜刀采纳,获得10
11秒前
达尔文发布了新的文献求助10
12秒前
YaoJason完成签到 ,获得积分10
13秒前
落后的彩虹完成签到 ,获得积分10
13秒前
14秒前
15秒前
佟韩发布了新的文献求助10
15秒前
gemini0615发布了新的文献求助10
15秒前
15秒前
15秒前
Dean应助Dong采纳,获得50
16秒前
隐形曼青应助TALE采纳,获得10
17秒前
zachary完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
20秒前
细腻的曼彤完成签到,获得积分10
20秒前
LiuQianyi发布了新的文献求助30
20秒前
zachary发布了新的文献求助10
21秒前
搜集达人应助刘大大采纳,获得10
21秒前
23秒前
BaiQi发布了新的文献求助10
23秒前
23秒前
蘑菇腿发布了新的文献求助10
24秒前
浮游应助lemon采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690