中缝背核
抗焦虑药
前额叶皮质
神经科学
谷氨酸的
兴奋剂
化学
血清素
安定
药理学
5-羟色胺能
心理学
受体
医学
谷氨酸受体
生物化学
认知
作者
Charlène Faye,René Hen,Bruno P. Guiard,Christine A. Denny,Alain M. Gardier,Indira Mendez‐David,Denis J. David
标识
DOI:10.1016/j.biopsych.2019.08.009
摘要
Background Activation of serotonin (5-HT) type 4 receptors (5-HT4Rs) has been shown to have anxiolytic effects in a variety of animal models. Characterizing the circuits responsible for these effects should offer insights into new approaches to treat anxiety. Methods We evaluated whether acute 5-HT4R activation in glutamatergic axon terminals arising from the medial prefrontal cortex (mPFC) to the dorsal raphe nucleus (DRN) induced fast anxiolytic effects. Anxiolytic effects of an acute systemic administration (1.5 mg/kg, intraperitoneally) or intra-mPFC infusion with the 5-HT4R agonist, RS67333 (0.5 μg/side), were examined in mice. To provide evidence that anxiolytic effects of RS67333 recruited an mPFC-DRN neural circuit, in vivo recordings of firing rate of DRN 5-HT neurons, cerebral 5-HT depletion, and optogenetic activation and silencing were performed. Results Acute systemic administration and intra-mPFC infusion of RS67333 produced fast anxiolytic effects and increased DRN 5-HT cell firing. Serotonin depletion prevented anxiolytic effects induced by mPFC infusion of RS67333. Surprisingly the anxiolytic effects of mPFC infusion diazepam (1.5 μg/side) were also blocked by 5-HT depletion. Optogenetically activating mPFC terminals targeting the DRN reduced anxiety, whereas silencing this circuit blocked RS67333 and diazepam mPFC infusion–induced anxiolytic effects. Finally, anxiolytic effects induced by an acute systemic RS67333 or diazepam administration were partially blocked after optogenetically inhibiting cortical glutamatergic terminals in the DRN. Conclusions Our findings suggest that activating 5-HT4R acutely in the mPFC or targeting mPFC pyramidal cell terminals in the DRN might constitute a strategy to produce a fast anxiolytic response.
科研通智能强力驱动
Strongly Powered by AbleSci AI