Developing Machine Learning-Based Models for Railway Inspection

卷积神经网络 计算机科学 软件部署 深度学习 人工智能 预处理器 特征工程 机器学习 可靠性工程 工程类 操作系统
作者
Chunsheng Yang,Yanmin Sun,Chris Ladubec,Yan Liu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 13-13 被引量:22
标识
DOI:10.3390/app11010013
摘要

Smart railway maintenance is crucial to the safety and efficiency of railway operations. Successful deployment of technologies such as condition-based monitoring and predictive maintenance will enable railway companies to conduct proactive maintenance before defects and failures take place to improve operation safety and efficiency. In this paper, we first propose to develop a classification-based method to detect rail defects such as localized surface collapse, rail end batter, or rail components—such as joints, turning points, crossings, etc.—by using acceleration data. In order to improve the performance of the classification-based models and enhance their applicability in practice, we further propose a deep learning-based approach for the detection of rail joints or defects by deploying convolutional neural networks (CNN). CNN-based models can work directly with raw data to reduce the heavy preprocessing of feature engineering and directly detect joints located on either the left or the right rail. Two convolutional networks, ResNet and fully convolutional networks (FCN), are investigated and evaluated with the collected acceleration data. The experimental results show both deep neural networks obtain good performance, which demonstrate that the deep learning-based methods are effective for detecting rail joints or defects with the expected performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Jason采纳,获得10
1秒前
晶坚强完成签到,获得积分10
1秒前
梓树发布了新的文献求助10
3秒前
英姑应助123456789采纳,获得10
3秒前
3秒前
5秒前
李笑完成签到,获得积分10
5秒前
友好真完成签到,获得积分10
5秒前
诺贝尔天才小狗完成签到,获得积分10
7秒前
流年发布了新的文献求助20
7秒前
水星摸鱼完成签到,获得积分10
8秒前
思源应助伍寒烟采纳,获得10
10秒前
TBI发布了新的文献求助200
10秒前
11秒前
12秒前
15秒前
Hello应助梓树采纳,获得10
16秒前
nml发布了新的文献求助10
16秒前
18秒前
名称完成签到,获得积分10
18秒前
tomorrow发布了新的文献求助30
18秒前
ED应助慵懒的树采纳,获得10
19秒前
flow完成签到 ,获得积分10
20秒前
tqmx完成签到,获得积分10
21秒前
苯环完成签到,获得积分10
22秒前
桐桐应助provin采纳,获得10
23秒前
无花果应助疯癫科研人采纳,获得10
24秒前
花花发布了新的文献求助10
24秒前
LJX完成签到,获得积分10
25秒前
一天一篇sci完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
喝一口奶茶完成签到,获得积分10
30秒前
31秒前
32秒前
34秒前
在水一方应助甜甜采纳,获得10
34秒前
ruochenzu发布了新的文献求助10
34秒前
伍寒烟发布了新的文献求助10
37秒前
TBI完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309