Developing Machine Learning-Based Models for Railway Inspection

卷积神经网络 计算机科学 软件部署 深度学习 人工智能 预处理器 特征工程 机器学习 可靠性工程 工程类 操作系统
作者
Chunsheng Yang,Yanmin Sun,Chris Ladubec,Yan Liu
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (1): 13-13 被引量:22
标识
DOI:10.3390/app11010013
摘要

Smart railway maintenance is crucial to the safety and efficiency of railway operations. Successful deployment of technologies such as condition-based monitoring and predictive maintenance will enable railway companies to conduct proactive maintenance before defects and failures take place to improve operation safety and efficiency. In this paper, we first propose to develop a classification-based method to detect rail defects such as localized surface collapse, rail end batter, or rail components—such as joints, turning points, crossings, etc.—by using acceleration data. In order to improve the performance of the classification-based models and enhance their applicability in practice, we further propose a deep learning-based approach for the detection of rail joints or defects by deploying convolutional neural networks (CNN). CNN-based models can work directly with raw data to reduce the heavy preprocessing of feature engineering and directly detect joints located on either the left or the right rail. Two convolutional networks, ResNet and fully convolutional networks (FCN), are investigated and evaluated with the collected acceleration data. The experimental results show both deep neural networks obtain good performance, which demonstrate that the deep learning-based methods are effective for detecting rail joints or defects with the expected performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鸭子给我是王浩腾我是健身王的求助进行了留言
1秒前
3秒前
爆米花应助hanxin108采纳,获得10
3秒前
4秒前
郭二完成签到,获得积分10
4秒前
5秒前
Owen应助张德美采纳,获得10
5秒前
zhouzhou打工人完成签到,获得积分10
6秒前
小迷糊完成签到,获得积分10
7秒前
YJ关注了科研通微信公众号
7秒前
飞飞发布了新的文献求助10
7秒前
7秒前
爆米花应助yunibbo采纳,获得30
8秒前
英姑应助韦灵珊采纳,获得10
8秒前
无语大王完成签到,获得积分10
9秒前
ssz发布了新的文献求助10
9秒前
9秒前
10秒前
斯文败类应助专一的映容采纳,获得10
11秒前
Min完成签到,获得积分10
11秒前
11秒前
诚心梦之完成签到,获得积分10
12秒前
良辰应助琬碗采纳,获得10
12秒前
bkagyin应助绿大暗采纳,获得10
12秒前
诚心的箴发布了新的文献求助10
12秒前
左丘傲菡发布了新的文献求助10
13秒前
小代完成签到,获得积分10
14秒前
her完成签到,获得积分10
14秒前
14秒前
15秒前
聪明蛋完成签到,获得积分10
16秒前
susu完成签到,获得积分10
16秒前
皎皎完成签到,获得积分10
16秒前
哦吼发布了新的文献求助10
16秒前
17秒前
honeymoon完成签到,获得积分10
17秒前
哭泣慕晴完成签到 ,获得积分10
17秒前
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303861
求助须知:如何正确求助?哪些是违规求助? 2938039
关于积分的说明 8485855
捐赠科研通 2611997
什么是DOI,文献DOI怎么找? 1426470
科研通“疑难数据库(出版商)”最低求助积分说明 662641
邀请新用户注册赠送积分活动 647245