亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials

医学 内科学 肿瘤科 结直肠癌 人口 临床试验 腺癌 癌症 无进展生存期 化疗 环境卫生
作者
Alexander Schperberg,Amélie Boichard,Igor F. Tsigelny,Stéphane Richard,Razelle Kurzrock
出处
期刊:International Journal of Cancer [Wiley]
卷期号:147 (9): 2537-2549 被引量:10
标识
DOI:10.1002/ijc.33240
摘要

Abstract Predicting oncologic outcome is challenging due to the diversity of cancer histologies and the complex network of underlying biological factors. In this study, we determine whether machine learning (ML) can extract meaningful associations between oncologic outcome and clinical trial, drug‐related biomarker and molecular profile information. We analyzed therapeutic clinical trials corresponding to 1102 oncologic outcomes from 104 758 cancer patients with advanced colorectal adenocarcinoma, pancreatic adenocarcinoma, melanoma and nonsmall‐cell lung cancer. For each intervention arm, a dataset with the following attributes was curated: line of treatment, the number of cytotoxic chemotherapies, small‐molecule inhibitors, or monoclonal antibody agents, drug class, molecular alteration status of the clinical arm's population, cancer type, probability of drug sensitivity (PDS) (integrating the status of genomic, transcriptomic and proteomic biomarkers in the population of interest) and outcome. A total of 467 progression‐free survival (PFS) and 369 overall survival (OS) data points were used as training sets to build our ML (random forest) model. Cross‐validation sets were used for PFS and OS, obtaining correlation coefficients ( r ) of 0.82 and 0.70, respectively (outcome vs model's parameters). A total of 156 PFS and 110 OS data points were used as test sets. The Spearman correlation ( r s ) between predicted and actual outcomes was statistically significant (PFS: r s = 0.879, OS: r s = 0.878, P < .0001). The better outcome arm was predicted in 81% (PFS: N = 59/73, z = 5.24, P < .0001) and 71% (OS: N = 37/52, z = 2.91, P = .004) of randomized trials. The success of our algorithm to predict clinical outcome may be exploitable as a model to optimize clinical trial design with pharmaceutical agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lorin完成签到 ,获得积分10
2秒前
一一完成签到,获得积分10
3秒前
4秒前
谨慎热狗发布了新的文献求助10
4秒前
谨慎热狗完成签到,获得积分10
14秒前
可乐发布了新的文献求助10
16秒前
17秒前
17秒前
seven发布了新的文献求助10
20秒前
小胡爱科研完成签到 ,获得积分10
22秒前
桐桐应助seven采纳,获得10
26秒前
可爱的函函应助清水采纳,获得10
33秒前
不倦应助哈哈哈采纳,获得10
33秒前
34秒前
!hau发布了新的文献求助10
38秒前
!hau完成签到,获得积分10
48秒前
十四完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
嘉心糖应助科研通管家采纳,获得30
59秒前
嗯哼应助科研通管家采纳,获得20
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得10
59秒前
59秒前
aman007完成签到,获得积分10
1分钟前
慕青应助aman007采纳,获得10
1分钟前
1分钟前
frap完成签到,获得积分0
1分钟前
1分钟前
婷妮哒哒发布了新的文献求助10
1分钟前
1分钟前
1分钟前
朱先生完成签到 ,获得积分10
1分钟前
1分钟前
梦会故乡发布了新的文献求助10
1分钟前
英俊的铭应助wang5945采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379069
求助须知:如何正确求助?哪些是违规求助? 2994571
关于积分的说明 8759702
捐赠科研通 2679092
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381