Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing

计算机科学 拥挤感测 联合学习 差别隐私 强化学习 数据共享 信息隐私 人工智能 脆弱性(计算) 机器学习 分布式计算 计算机安全 数据挖掘 医学 病理 替代医学
作者
Yuntao Wang,Zhou Su,Ning Zhang,Abderrahim Benslimane
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1055-1069 被引量:203
标识
DOI:10.1109/tnse.2020.3014385
摘要

Unmanned aerial vehicles (UAVs) combined with artificial intelligence (AI) have opened a revolutionized way for mobile crowdsensing (MCS). Conventional AI models, built on aggregation of UAVs' sensing data (typically contain private and sensitive user information), may arise severe privacy and data misuse concerns. Federated learning, as a promising distributed AI paradigm, has opened up possibilities for UAVs to collaboratively train a shared global model without revealing their local sensing data. However, there still exist potential security and privacy threats for UAV-assisted crowdsensing with federated learning due to vulnerability of central curator, unreliable contribution recording, and low-quality shared local models. In this paper, we propose SFAC, a secure federated learning framework for UAV-assisted MCS. Specifically, we first introduce a blockchain-based collaborative learning architecture for UAVs to securely exchange local model updates and verify contributions without the central curator. Then, by applying local differential privacy, we design a privacy-preserving algorithm to protect UAVs' privacy of updated local models with desirable learning accuracy. Furthermore, a two-tier reinforcement learning-based incentive mechanism is exploited to promote UAVs' high-quality model sharing when explicit knowledge of network parameters are not available in practice. Extensive simulations are conducted, and the results demonstrate that the proposed SFAC can effectively improve utilities for UAVs, promote high-quality model sharing, and ensure privacy protection in federated learning, compared with existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzzzzzzzzz完成签到,获得积分20
刚刚
刚刚
1秒前
2秒前
3秒前
谭谨川发布了新的文献求助10
3秒前
cheung完成签到,获得积分10
3秒前
乌日汗完成签到,获得积分10
4秒前
4秒前
4秒前
公茂源完成签到 ,获得积分10
5秒前
共享精神应助spurs17采纳,获得30
6秒前
BONBON发布了新的文献求助10
7秒前
liuqian发布了新的文献求助10
7秒前
浮生完成签到 ,获得积分10
7秒前
奔跑的青霉素完成签到 ,获得积分10
7秒前
linxue发布了新的文献求助10
7秒前
科研通AI5应助Annie采纳,获得10
7秒前
8秒前
执着发布了新的文献求助20
8秒前
原鑫完成签到,获得积分10
8秒前
寒涛先生完成签到,获得积分20
9秒前
10秒前
科研通AI5应助呆萌的元枫采纳,获得30
10秒前
10秒前
gzsy发布了新的文献求助10
10秒前
12秒前
14秒前
14秒前
哄不好的南完成签到,获得积分10
14秒前
makus完成签到,获得积分10
14秒前
西西歪完成签到,获得积分10
16秒前
16秒前
深情安青应助BONBON采纳,获得10
16秒前
小马完成签到,获得积分10
17秒前
17秒前
细腻沅发布了新的文献求助10
19秒前
火羽白然完成签到 ,获得积分10
19秒前
冰西瓜完成签到 ,获得积分10
20秒前
季忆发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808