Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing

计算机科学 拥挤感测 联合学习 差别隐私 强化学习 数据共享 信息隐私 人工智能 脆弱性(计算) 机器学习 分布式计算 计算机安全 数据挖掘 医学 替代医学 病理
作者
Yuntao Wang,Zhou Su,Ning Zhang,Abderrahim Benslimane
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1055-1069 被引量:217
标识
DOI:10.1109/tnse.2020.3014385
摘要

Unmanned aerial vehicles (UAVs) combined with artificial intelligence (AI) have opened a revolutionized way for mobile crowdsensing (MCS). Conventional AI models, built on aggregation of UAVs' sensing data (typically contain private and sensitive user information), may arise severe privacy and data misuse concerns. Federated learning, as a promising distributed AI paradigm, has opened up possibilities for UAVs to collaboratively train a shared global model without revealing their local sensing data. However, there still exist potential security and privacy threats for UAV-assisted crowdsensing with federated learning due to vulnerability of central curator, unreliable contribution recording, and low-quality shared local models. In this paper, we propose SFAC, a secure federated learning framework for UAV-assisted MCS. Specifically, we first introduce a blockchain-based collaborative learning architecture for UAVs to securely exchange local model updates and verify contributions without the central curator. Then, by applying local differential privacy, we design a privacy-preserving algorithm to protect UAVs' privacy of updated local models with desirable learning accuracy. Furthermore, a two-tier reinforcement learning-based incentive mechanism is exploited to promote UAVs' high-quality model sharing when explicit knowledge of network parameters are not available in practice. Extensive simulations are conducted, and the results demonstrate that the proposed SFAC can effectively improve utilities for UAVs, promote high-quality model sharing, and ensure privacy protection in federated learning, compared with existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
LSZ完成签到,获得积分10
刚刚
小易发布了新的文献求助10
1秒前
孤鸿.完成签到 ,获得积分0
2秒前
科研通AI6.1应助高很帅采纳,获得10
3秒前
关关完成签到 ,获得积分10
4秒前
21_xxrr完成签到 ,获得积分10
4秒前
Owen应助JJJJJJJJJJJ采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Hello应助包尚易采纳,获得50
5秒前
evz完成签到,获得积分10
6秒前
yiyi给yiyi的求助进行了留言
6秒前
7秒前
思源应助嘿嘿汪采纳,获得10
7秒前
Ting发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
12秒前
12秒前
13秒前
14秒前
炙热橘子应助1111111采纳,获得10
14秒前
研友_enPJa8发布了新的文献求助10
14秒前
14秒前
nessa发布了新的文献求助10
14秒前
14秒前
汉堡包应助淡淡夕阳采纳,获得10
14秒前
14秒前
NexusExplorer应助么么蛙采纳,获得10
15秒前
研友_VZG7GZ应助hxn采纳,获得10
16秒前
领导范儿应助标致的飞烟采纳,获得10
16秒前
小智发布了新的文献求助10
17秒前
小易发布了新的文献求助10
17秒前
1Aaa发布了新的文献求助10
18秒前
深海渔发布了新的文献求助10
18秒前
18秒前
刘放发布了新的文献求助10
18秒前
ppsweek发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771375
求助须知:如何正确求助?哪些是违规求助? 5591024
关于积分的说明 15427232
捐赠科研通 4904665
什么是DOI,文献DOI怎么找? 2638922
邀请新用户注册赠送积分活动 1586761
关于科研通互助平台的介绍 1541771