EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and their Applications

脑-机接口 计算机科学 脑电图 人工智能 可穿戴计算机 人机交互 机器学习 接口(物质) 数据科学 神经科学 心理学 最大气泡压力法 嵌入式系统 气泡 并行计算
作者
Xiaotong Gu,Zehong Cao,Alireza Jolfaei,Peng Xu,Dongrui Wu,Tzyy‐Ping Jung,Chin‐Teng Lin
出处
期刊:Cornell University - arXiv 被引量:32
摘要

Brain-Computer Interface (BCI) is a powerful communication tool between users and systems, which enhances the capability of the human brain in communicating and interacting with the environment directly. Advances in neuroscience and computer science in the past decades have led to exciting developments in BCI, thereby making BCI a top interdisciplinary research area in computational neuroscience and intelligence. Recent technological advances such as wearable sensing devices, real-time data streaming, machine learning, and deep learning approaches have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications. Many people benefit from EEG-based BCIs, which facilitate continuous monitoring of fluctuations in cognitive states under monotonous tasks in the workplace or at home. In this study, we survey the recent literature of EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensated for the gaps in the systematic summary of the past five years (2015-2019). In specific, we first review the current status of BCI and its significant obstacles. Then, we present advanced signal sensing and enhancement technologies to collect and clean EEG signals, respectively. Furthermore, we demonstrate state-of-art computational intelligence techniques, including interpretable fuzzy models, transfer learning, deep learning, and combinations, to monitor, maintain, or track human cognitive states and operating performance in prevalent applications. Finally, we deliver a couple of innovative BCI-inspired healthcare applications and discuss some future research directions in EEG-based BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwz626完成签到,获得积分10
刚刚
ccc发布了新的文献求助10
1秒前
2080534226WR发布了新的文献求助10
1秒前
1秒前
泡泡完成签到,获得积分10
1秒前
云云发布了新的文献求助10
2秒前
空咻咻发布了新的文献求助10
2秒前
dpc发布了新的文献求助10
4秒前
水果兵治武士完成签到,获得积分10
4秒前
上官若男应助好旺采纳,获得10
4秒前
稳重的麦片应助xwz626采纳,获得10
5秒前
泡泡发布了新的文献求助10
5秒前
Ava应助空咻咻采纳,获得10
5秒前
7秒前
xyydhcg完成签到,获得积分20
8秒前
赘婿应助机灵的大地采纳,获得10
8秒前
小黎发布了新的文献求助10
11秒前
俏皮路灯发布了新的文献求助10
13秒前
斯文败类应助仙林AK47采纳,获得10
13秒前
14秒前
16秒前
16秒前
xiao完成签到 ,获得积分10
16秒前
19秒前
wxzk发布了新的文献求助10
19秒前
好旺发布了新的文献求助10
20秒前
orixero应助水果兵治武士采纳,获得10
22秒前
科研通AI2S应助大男采纳,获得10
22秒前
lincanmou2应助HAN采纳,获得10
22秒前
Singularity应助小鼠星球采纳,获得20
24秒前
25秒前
denise完成签到 ,获得积分10
26秒前
26秒前
26秒前
27秒前
27秒前
小马甲应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
莫西莫西完成签到 ,获得积分10
27秒前
唠嗑在呐完成签到,获得积分10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397399
求助须知:如何正确求助?哪些是违规求助? 3006521
关于积分的说明 8821627
捐赠科研通 2693739
什么是DOI,文献DOI怎么找? 1475421
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675758