A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol

化学 催化作用 甲醇 选择性 离解(化学) 密度泛函理论 吸附 X射线光电子能谱 氧气 无机化学 光化学 化学工程 有机化学 物理化学 计算化学 工程类
作者
Xiao Jiang,Xiaowa Nie,Yutao Gong,Colton M. Moran,Jianyang Wang,Jie Zhu,Huibin Chang,Xinwen Guo,Krista S. Walton,Chunshan Song
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:383: 283-296 被引量:67
标识
DOI:10.1016/j.jcat.2020.01.014
摘要

CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunsunsun完成签到,获得积分10
刚刚
哎嘤斯坦完成签到,获得积分10
2秒前
2秒前
sweetbearm应助潦草采纳,获得10
3秒前
sunsunsun发布了新的文献求助10
3秒前
酷波er应助Mars采纳,获得10
4秒前
迪士尼在逃后母完成签到,获得积分10
4秒前
4秒前
我是老大应助su采纳,获得10
5秒前
hhh发布了新的文献求助10
6秒前
7秒前
科研通AI5应助魏伯安采纳,获得10
8秒前
8秒前
神可馨完成签到 ,获得积分10
9秒前
Hangerli发布了新的文献求助20
9秒前
HealthyCH完成签到,获得积分10
9秒前
li完成签到,获得积分10
10秒前
11秒前
ononon发布了新的文献求助10
13秒前
13秒前
liu完成签到,获得积分10
15秒前
LWJ发布了新的文献求助10
16秒前
17秒前
大反应釜完成签到,获得积分10
17秒前
TT发布了新的文献求助10
20秒前
Jenny发布了新的文献求助10
22秒前
22秒前
完美凝竹发布了新的文献求助10
22秒前
我是站长才怪应助细腻沅采纳,获得10
23秒前
JG完成签到 ,获得积分10
23秒前
hhh完成签到,获得积分20
23秒前
科研通AI5应助想瘦的海豹采纳,获得10
24秒前
随性完成签到 ,获得积分10
24秒前
自由的信仰完成签到,获得积分10
25秒前
27秒前
28秒前
28秒前
夏夏发布了新的文献求助10
29秒前
打打应助Hangerli采纳,获得10
31秒前
完美凝竹完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824