A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol

化学 催化作用 甲醇 选择性 离解(化学) 密度泛函理论 吸附 X射线光电子能谱 氧气 无机化学 光化学 化学工程 有机化学 物理化学 计算化学 工程类
作者
Xiao Jiang,Xiaowa Nie,Yutao Gong,Colton M. Moran,Jianyang Wang,Jie Zhu,Huibin Chang,Xinwen Guo,Krista S. Walton,Chunshan Song
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:383: 283-296 被引量:107
标识
DOI:10.1016/j.jcat.2020.01.014
摘要

CO2 hydrogenation with renewable energy is one of the promising approaches to mitigate CO2 emissions and produce sustainable chemicals and fuels. The effect of adding H2O in the feed gas on the activity and selectivity of In2O3/ZrO2 catalysts for CO2 hydrogenation to methanol was studied using combined experimentatal and computational efforts. Notably, adding an appropriate amount of H2O (0.1 mol%) in the feed gas significantly enhanced the CH3OH formation (ca. 20%) with improved selectivity. Characterization with STEM/EDS and CO2-TPD confirmed the preservation of In-Zr strong interaction in the presence of additional H2O and H2O-induced oxygen vacancies, which significantly improved CO2 adsorption capacity. XPS analysis revealed the formation of InOOH species due to H2O addition, which appeared to correlate to H2O-dependant enhancement of CH3OH formation. Density functional theory calculations rationalized the effect of surface H2O on InOOH formation and its correlation to CH3OH synthesis activity. Adding H2O was found to facilitate surface InOOH formation, suppress CO formation through COOH* intermediate, and promote CH3OH formation via HCOO* intermediate. However, excess H2O addition resulted in aggregation of In species and reduction of surface In0 for H2 dissociation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓大有完成签到,获得积分10
1秒前
2秒前
2秒前
善学以致用应助bubu采纳,获得10
2秒前
星星完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助珞珈采纳,获得10
3秒前
爆米花应助Cassie采纳,获得10
4秒前
华仔应助zhangyulong采纳,获得10
4秒前
blush完成签到,获得积分10
4秒前
4秒前
5秒前
于晓雅完成签到,获得积分10
5秒前
6秒前
彭于晏应助矮小的笑旋采纳,获得10
6秒前
璟晨岁月完成签到,获得积分10
6秒前
6秒前
7秒前
zho发布了新的文献求助10
7秒前
顺利汉堡完成签到,获得积分10
7秒前
YOGA完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Dylan完成签到,获得积分10
9秒前
wang完成签到,获得积分0
9秒前
lss发布了新的文献求助10
9秒前
10秒前
huan完成签到,获得积分10
10秒前
科研通AI6应助Fortune采纳,获得10
10秒前
10秒前
cyx发布了新的文献求助10
11秒前
11秒前
chen发布了新的文献求助10
11秒前
11秒前
李爱国应助小璐璐呀采纳,获得10
11秒前
11秒前
汉堡包应助木木木采纳,获得10
12秒前
13秒前
Joyce发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809