A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets

光催化 异质结 材料科学 表面等离子共振 载流子 等离子体子 半导体 光电子学 退火(玻璃) 纳米技术 光化学 纳米颗粒 化学 催化作用 复合材料 生物化学
作者
Yanzhen Guo,Binbin Chang,Ting Bin Wen,Shouren Zhang,Min Zeng,Nantao Hu,Yanjie Su,Zhi Yang,Jing Wang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:567: 213-223 被引量:87
标识
DOI:10.1016/j.jcis.2020.01.090
摘要

Light-harvesting capacity and photoexcited charge carrier separation ability are two crucial requirements for high-efficiency semiconductor photocatalysis. Here, we report a plasmonic Z-scheme nanohybrid by hydrothermally in-situ growing two-dimensional (2D) oxygen-deficient molybdenum oxide (MoO3-x) nanoplates onto 2D graphitic carbon nitride (g-C3N4) nanosheets. The resultant 2D/2D MoO3-x/g-C3N4 nanohybrids not only construct a unique Z-scheme heterojunction, which improves the photogenerated charge carrier separation efficiency, but also possess numerous oxygen vacancies on the surface of MoO3-x, which could excite its plasmon resonance for extending spectrum adsorption. Importantly, the plasmon resonance can be readily designed by tailoring the oxygen vacancy concentration via an annealing in air. Benefiting from the synergetic effect of interfacial Z-scheme heterojunction and the tunable plasmon resonance of MoO3-x, the as-obtained nanohybrids achieve a remarkably improved photocatalytic H2 evolution efficiency. The optimal Z-scheme heterostructure presents 2.6 and 1.7 times higher of H2 evolution rate as compared to pure g-C3N4 and the annealing nanohybrid under visible light irradiation. Even under light irradiation with wavelength longer than 590 nm, the hybrid photocatalyst displays a H2 generation rate as high as 22.8 µmol h−1 due to the plasmonic sensitization effect. The result in our work can provide an alternative for fabricating Z-scheme heterostructures that take advantages of Z-scheme-induced charge carrier separation, accompanied with plasmon-enhanced light harvesting of semiconductor to advance the solar energy conversion efficiency in photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
titamisulydia完成签到,获得积分10
刚刚
人群是那么像羊群完成签到,获得积分10
刚刚
xuedan3000完成签到 ,获得积分10
2秒前
zq发布了新的文献求助10
3秒前
tier3完成签到,获得积分10
3秒前
芳芳完成签到,获得积分10
3秒前
无尘完成签到,获得积分10
5秒前
何果果完成签到,获得积分10
6秒前
苹果烧鹅完成签到,获得积分10
7秒前
可爱的芷云完成签到,获得积分20
9秒前
外向的梦安完成签到,获得积分10
9秒前
科研醉汉完成签到,获得积分10
10秒前
11秒前
12秒前
XH发布了新的文献求助10
13秒前
王灿灿应助euphoria采纳,获得20
13秒前
wss123456完成签到,获得积分20
14秒前
大方的舞仙完成签到 ,获得积分10
15秒前
YY-Bubble完成签到,获得积分10
15秒前
ming123ah完成签到,获得积分10
15秒前
宋北北完成签到,获得积分10
16秒前
秋枫忆完成签到,获得积分10
17秒前
Singularity应助可爱的芷云采纳,获得10
18秒前
等待的谷波完成签到 ,获得积分10
20秒前
胡不喜完成签到,获得积分10
22秒前
邓佳鑫Alan应助科研通管家采纳,获得10
22秒前
研友_ED5GK应助科研通管家采纳,获得30
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
genomed应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
邓佳鑫Alan应助科研通管家采纳,获得50
23秒前
科目三应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
不配.应助科研通管家采纳,获得20
23秒前
英姑应助科研通管家采纳,获得10
23秒前
Yziii应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
LZNL完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011