Loss of KLF6 Recapitulates Molecular and Functional Changes Associated with Aging in Human Hematopoietic Stem and Progenitor Cells

生物 造血 干细胞 髓样 川地34 祖细胞 免疫学 骨髓生成 CD38 癌症研究 细胞生物学
作者
Alejandro Roisman,Emmalee R. Adelman,Hsin‐Chun Huang,Dean Wade,Daniel Bilbao,María E. Figueroa
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 447-447 被引量:1
标识
DOI:10.1182/blood-2019-130800
摘要

With aging there is a gradual decline in normal HSC function, which is accompanied by an increased risk for the development of hematological malignancies. While a lot of work has been done in mice to understand this functional decline, less is known about human HSC biology with aging. We recently reported that KLF6, a Krüpper-like transcription factor, is one of the top genes downregulated with aging in human Lin-CD34+CD38- cells, and that this downregulation correlates with loss of H3K27ac at several KLF6 upstream putative enhancer regions. Therefore, we hypothesized that age-acquired epigenetic deregulation at the KLF6 locus resulting in loss of expression may be implicated in age-related HSC dysfunction and increased risk of malignant transformation. In order to test this, we isolated CD34+ hematopoietic stem and progenitor cells (HSPCs) from healthy individuals and performed CRISPR-Cas9-based genome editing and transcriptional activation of the KLF6 locus. KLF6-deficient cells were evaluated in terms of their function by colony-forming potential, in vitro differentiation, and hematopoietic reconstitution in immunocompromised mice. Myeloid and erythroid in vitro differentiation assays in liquid culture revealed that KLF6 knock-out (KO) in healthy, young HSPC results in persistent CD34+ expression (n=5, p<0.01) and strong reduction of the CD11b, CD15 and CD33 myeloid markers (n=5, p<0.05 for all markers), and the CD71 and CD235a erythroid markers (n=5, p<0.05 for both markers), indicating that loss of KLF6 leads to a block in the differentiation programs of HSPCs. Moreover, KLF6 KO cells plated on methylcellulose exhibited an increase in the total number of colonies (n=5, p=0.02) with a strong increase in the formation of granulocyte-monocyte colonies (n=5, p=0.014) as well as an increase in erythroid burst-forming units (n=5, p=0.034), indicating increased progenitor potential in these cells. Importantly, CRISPR targeting of the nearest putative enhancer to the KLF6 locus (-25kb), which resulted in >75% downregulation of the KLF6 transcript, recapitulated the differentiation block and colony-forming phenotypes. Next, in order to define if KLF6 genomic inactivation results in an expression profile similar to that observed in healthy aged donors, we performed RNA-seq analysis. This confirmed that in young CD34+ cells both targeting KLF6 and its putative enhancer, results in gene expression signature enriched not only for our previously reported human aging HSC signature (GSEA NES=1.25 & FDR<0.01 for genes up with aging and NES=-1.17 and FDR<0.1 for genes down with aging), but also for several leukemia-associated gene signatures. Next, we sought to determine if re-expression of KLF6 in aged CD34+ cells could reverse the aging phenotype. KLF6 induction in these cells using a dCas9-VP64 fusion system led to a decrease in their myeloid differentiation potential, compared to unmanipulated and non-targeting control (NTC). This decrease in the in vitro myeloid output brought aged CD34+ cells to a behavior closer to their younger counterpart controls. Finally, to determine the impact that KLF6 inactivation may have in the hematopoietic system in vivo, we engrafted KLF6 knock-out (KO) (n=7) and NTC (n=7) cells into immunodeficient NSGS recipients. Analysis of KLF6 KO recipients revealed an increased myeloid output in peripheral blood compared to NTC (weeks 8 to 14), which was accompanied by a decrease in lymphoid output. Moreover, analysis of the bone marrow composition at week 14 showed increased frequency of CD34+CD38-CD45RA-CD90+CD49f+ HSC and CD34+CD38+ progenitor components (p=0.02, and p=0.04, respectively). In summary, our findings demonstrate that KLF6 is essential for normal in vitro and in vivo hematopoietic function, and that loss of this transcription factor recapitulates both the expression profile of aged HSC as well as several of the functional characteristics of aged hematopoiesis. These observations were further validated by the reactivation of KLF6 in aged HSPCs, which resulted in an attenuation of the aging HSPC phenotype in vitro. Finally, changes in gene expression in KLF6 KO cells indicate that it may be essential for regulation of gene expression programs involved in malignant transformation, such that age-related loss of this transcription factor may contribute to predisposition to myeloid malignancies. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋千风完成签到 ,获得积分10
1秒前
无花果应助Wang采纳,获得10
1秒前
热心小松鼠完成签到,获得积分10
3秒前
科研通AI2S应助蔡从安采纳,获得10
3秒前
不配.应助蔡从安采纳,获得10
3秒前
wujiwuhui完成签到 ,获得积分10
5秒前
wei完成签到,获得积分10
8秒前
10秒前
几米完成签到 ,获得积分10
15秒前
16秒前
_xySH完成签到 ,获得积分10
16秒前
17秒前
贪玩的半仙完成签到,获得积分10
18秒前
口布鲁完成签到,获得积分10
19秒前
LSY发布了新的文献求助10
22秒前
蔡从安完成签到,获得积分20
23秒前
无奈的邪欢完成签到,获得积分10
31秒前
weng完成签到,获得积分10
35秒前
xichang完成签到 ,获得积分10
36秒前
许大脚完成签到 ,获得积分10
39秒前
关中人完成签到,获得积分10
44秒前
LSY完成签到,获得积分10
44秒前
fan发布了新的文献求助10
46秒前
50秒前
emxzemxz完成签到 ,获得积分10
50秒前
Wang发布了新的文献求助10
53秒前
嘻哈学习完成签到,获得积分10
54秒前
guandada完成签到 ,获得积分10
54秒前
h w wang完成签到,获得积分10
55秒前
小萌完成签到,获得积分10
59秒前
yuminger完成签到 ,获得积分10
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
fan完成签到,获得积分10
1分钟前
1分钟前
山复尔尔完成签到 ,获得积分10
1分钟前
爱听歌连虎完成签到 ,获得积分10
1分钟前
glanceofwind完成签到 ,获得积分10
1分钟前
吴荣方完成签到 ,获得积分10
1分钟前
JOY完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768884
捐赠科研通 2440259
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792