亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions

材料科学 阳极 锂(药物) 法拉第效率 化学工程 超级电容器 离子 纳米复合材料 电池(电) 电极 假电容 储能 纳米技术 电化学 功率(物理) 医学 化学 物理 工程类 物理化学 量子力学 内分泌学
作者
Baoyu Sun,Shuaifeng Lou,Zhengyi Qian,Pengjian Zuo,Chunyu Du,Yulin Ma,Hua Huo,Jingying Xie,Jiajun Wang,Geping Yin
出处
期刊:Nano Energy [Elsevier]
卷期号:66: 104179-104179 被引量:57
标识
DOI:10.1016/j.nanoen.2019.104179
摘要

Transition metal oxides are regarded as the promising anodes for lithium ion batteries owing to the high theoretical capacities. However, the mechanical and electrochemical degradations severely reduce the electrode lifetime and limit its practical application. Here, for the first time, a novel CoFe2O4@Fe2O3 nanocomposites combing dual Li-ions channels and stabilized hollow sphere architecture is reported. The unique transport routes for lithium ion have been created by the design of surface holes and inner channels, offering extra lithium storage sites and accelerating its transport. Quantitative kinetic analysis reveals that the capacity based on hollow sphere heterostructured NLCFs is governed by pseudocapacitance, especially at high current rates, exhibiting excellent rate performance and high specific capacity. Benefiting from the steady sphere hollow configuration and abundant ions channels, the NLCFs nanocomposites deliver excellent long-term stability (520 and 477 mAh g−1 at 5 and 10 A g−1 for 2000 cycles, respectively) with ultrahigh Coulombic efficiency (more than 99.5%). And the full cell can remain a reversible capacity of 516 mAh g−1 at the current density of 1 A g−1 after 500 cycles. This interesting dual lithium ion channels design opens a new avenue to build high-power LIBs for electrochemical energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwww威完成签到,获得积分10
7秒前
YHF2发布了新的文献求助10
15秒前
YHF2完成签到,获得积分10
21秒前
31秒前
doublenine18发布了新的文献求助30
36秒前
37秒前
李丹阳完成签到,获得积分10
1分钟前
Criminology34举报zz求助涉嫌违规
1分钟前
1分钟前
Bin_Liu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助风华正茂采纳,获得10
1分钟前
1分钟前
橘橘橘子皮完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
布吉岛呀完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
风华正茂发布了新的文献求助10
2分钟前
deng203完成签到,获得积分10
2分钟前
3分钟前
Bin_Liu完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
潘小嘎完成签到 ,获得积分10
3分钟前
sswy完成签到 ,获得积分10
3分钟前
4分钟前
神明完成签到 ,获得积分10
4分钟前
4分钟前
WW完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
无情墨镜发布了新的文献求助10
5分钟前
5分钟前
Feng完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514