Computing Minkowski sums

Minkowski加法 数学 闵可夫斯基空间 有界函数 边界(拓扑) 参数统计 代数数 计算 正多边形 参数方程 多项式的 多面体 离散数学 组合数学 算法 数学分析 几何学 统计
作者
Anil Kaul
链接
摘要

Minkowski sums are a useful tool for applications of geometric modelling and the sum of two given regions can be regarded as the region generated by sweeping a given region along the other. Though the sums have often been applied, and their theoretical properties studied, little has appeared concerning efficient calculation in the general case where both summands are non-convex. This thesis studies Minkowski sums of regular, bounded and path connected polygons, plane algebraic curves, and regular bounded and path-connected polyhedra in detail, discussing algorithms for their computation and establishing sharp output size estimates. It also studies some of the applications of Minkowski sums. In the polygonal case, we study the Minkowski sums of regular, bounded and path connected polygons in detail, discussing algorithms for their computation and establishing a sharp output size estimate. We also provide examples and discuss the observed time complexity and contrast it with the possible worst case complexity of the algorithms. We also present an extension of the main algorithm to the case where the polygons are unbounded. The Polyhedral algorithms presented are extensions of the planar case. In the case of algebraic curves, we show that the boundary of the Minkowski sum consists of portions of the envelope of translates of the swept curve. We show that the Minkowski-sum boundary is describable as an algebraic curve (or subset thereof) when the given curves are algebraic, and illustrate the computation of its implicit equation. We also formulate a simple numerical procedure for the case of polynomial parametric curves, based on constructing the Gauss maps of the given curves and using them to identify curve segments that are to be summed. We then present a method to extract the true boundary from the sum of these segments. We have used Minkowski sums to develop a new, simple, and efficient primitive for interpolating polyhedra: a Parameterized Interpolating Polyhedron, or PIP for short. PIPs are easily specified and edited by providing their initial and final shapes, which may be any polyhedra, and need not have corresponding boundary elements, nor be convex. We provide simple and efficient algorithms, for computing PIPs, which can be efficiently displayed using standard depth-buffer hardware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maxthon完成签到,获得积分10
2秒前
热心市民完成签到 ,获得积分10
3秒前
cocofan完成签到 ,获得积分10
5秒前
JN完成签到,获得积分10
9秒前
苏苏爱学习完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
xzy998应助科研通管家采纳,获得10
16秒前
温暖冬日完成签到,获得积分10
19秒前
北国雪未消完成签到 ,获得积分10
20秒前
xumq完成签到,获得积分10
21秒前
无极2023完成签到 ,获得积分0
24秒前
xumq发布了新的文献求助10
25秒前
David完成签到 ,获得积分10
25秒前
祝你勇敢完成签到 ,获得积分10
27秒前
韭黄发布了新的文献求助10
28秒前
FBQZDJG2122完成签到,获得积分10
29秒前
曲艺完成签到,获得积分10
30秒前
smottom应助韭黄采纳,获得10
35秒前
jackwang完成签到,获得积分10
38秒前
Asumita完成签到,获得积分10
39秒前
SHuEvan完成签到,获得积分10
39秒前
沐雨汐完成签到,获得积分10
39秒前
尔尔完成签到 ,获得积分10
40秒前
牛黄完成签到 ,获得积分10
40秒前
金枪鱼子发布了新的文献求助10
40秒前
满意的念柏完成签到,获得积分10
41秒前
合适的幻然完成签到,获得积分10
44秒前
淡然思卉完成签到,获得积分10
45秒前
韭黄完成签到,获得积分20
46秒前
小瓜完成签到 ,获得积分10
47秒前
你我的共同完成签到 ,获得积分10
47秒前
郭德久完成签到 ,获得积分0
48秒前
PZL完成签到,获得积分10
49秒前
星辰大海应助123采纳,获得10
49秒前
争当科研巨匠完成签到,获得积分10
50秒前
发发旦旦完成签到,获得积分10
50秒前
拾壹完成签到,获得积分10
52秒前
ihonest完成签到,获得积分10
53秒前
今天也要好好学习完成签到,获得积分10
54秒前
殷勤的凝海完成签到 ,获得积分10
54秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015