已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The effect of pleating density and dust type on performance of absolute fibrous filters

赫帕 暖通空调 滤波器(信号处理) 压力降 环境科学 过滤(数学) 工艺工程 工程类 环境工程 模拟 空调 机械工程 数学 统计 机械 物理 电气工程
作者
I.S. Al-Attar
链接
摘要

The importance of clean air to the well-being of people and for the protection of industrial equipment has highlighted the critical role of air filter performance. The objective of this thesis is to study the filter performance characteristics namely; the pressure drop and the fractional efficiency of standard full scale (592x592x400 mm) mini-pleated HEPA absolute fibrous filters. Accurate filter performance prediction plays a significant role in estimating the lifetime of filters and reducing energy and maintenance operating costs. To ensure the appropriate filter selection has been made for a specific application, filter design must be further investigated to include pleat count and its corresponding surface area. The investigations undertaken in this work were based on using standard SAE coarse and fine dust. This guaranteed that the results would be applicable globally irrespective of the geographical location or the field of application of the filtration technology. However, the performance of air filters used in gas turbine and HVAC applications tend to deviate from that predicted by laboratory results using standard air dust. This is especially true in regions known to have dust with characteristics deviating from that of standard dust, such as in Kuwait. Therefore, as part of this thesis, the Kuwaiti atmospheric dust has been characterized both chemically and physically in order to investigate the possible impact of these characteristics on the results of the filter performance. It transpired, however, that the characteristics of dust with extreme properties, represented in this case by Kuwaiti dust, fell between those of the characteristics of the two standard types of dust, namely, SAE coarse and fine dust. This finding, therefore, provides additional confidence in the generality of the results pertaining to the filter performance. The work investigated the effects of ten different flow rates ranging from 500 to 5000 m3/h with increment of 500 m3/h. The four different pleating densities used to construct the filter were 28, 30, 32 and 34 pleats per 100mm. This experimental work was conducted while keeping other parameters such as filter media class unchanged. Pleating density may play a major role in achieving the optimum pressure drop and the required efficiency expected from such a filter. Such optimization was expected to ii facilitate design alternatives supported by experimental results. A testing facility located in Limburg Germany at the EMW Filtertechnik GmbH was used for this testing. Two different particle size counters were used to cover a considerable particle size range. The results of the particle counter with size range of: 0.065 – 0.9 μm was used for the analysis since it covered the study of the Most Penetrating Particle Size (MPPS) with respect to the filter pleat density and face velocities. This experimental work involved testing ten industrial full scale HEPA filters, which were divided into three groups. The first two Groups (Group A and B), each consisted of four filters manufactured with different pleat densities of 28, 30, 32 and 34 pleat per 100 mm. The third Group C consisted of two filters; the first filter had horizontal pleat orientation while the second pleats were oriented vertically. Both filters in Group C had a pleat density of 28 pleat per 100 mm. Filters of Groups A and B were challenged with SAE coarse and fine dust, respectively. In the case of filters of Group C, only the initial pressure drop and efficiency measurements were conducted. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of face velocity and pleat density. The reasons which led to surface area losses of filtration media are due to one or combination of the following effects: pleat crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. The experimental data for fractional efficiency were fitted using a modified Lee and Liu [1982a] model. The proposed modified model was verified to show a good agreement with the experimental results. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase of particle size. The MPPS shifts to a smaller particle size as the face velocity increases and the pleating density and orientation did not have a pronounced effect on the MPPS. The second part of this experimental work involved the dust loading process which showed a higher efficiency and pressure drop response of SAE fine dust when compared to SAE coarse dust. Increasing the mass of dust loads and flow rates have a significant effect on the filter efficiency while the effect of varying pleating density was negligible. Throughout this study, optimal pleat count which satisfies both initial and dust loaded pressure drop and efficiency requirements may not have necessarily existed. This experimental work has also suggested that a valid comparison of the pleat densities iii should be based on the effective surface area which participates in the filtration action and not the total surface area the pleat density provides. The work in this thesis has presented novel contribution in four aspects. Firstly, the full scale nature of the experiments resulted from using full scale standard industrial size HEPA filters constructed in V-shape banks cartridge in all the tests. Secondly, a novel explanation of when the surface area losses become a dominant factor in the filter permeability reduction. Thirdly, the discovery of the fact that increasing the pleating density could be counterproductive in terms of effective filtration surface area and filter permeability. Finally, the work has proposed new design alterations for maintaining effective surface areas. All design improvements are currently under review as they might require developmental work and investigation prior to any possible future implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
等待飞松完成签到,获得积分20
4秒前
北风那个崔完成签到 ,获得积分10
5秒前
vvvvba0202发布了新的文献求助10
7秒前
9秒前
10秒前
11秒前
13秒前
1206425219密发布了新的文献求助10
14秒前
15秒前
flyboy发布了新的文献求助10
18秒前
20秒前
月儿完成签到 ,获得积分10
23秒前
1206425219密完成签到,获得积分10
25秒前
洞两发布了新的文献求助10
25秒前
科研通AI6应助vvvvba0202采纳,获得10
25秒前
开心的寄灵完成签到 ,获得积分10
28秒前
恋晨完成签到 ,获得积分10
28秒前
NOTHING完成签到 ,获得积分10
33秒前
pass完成签到 ,获得积分10
35秒前
后陡门爱神完成签到 ,获得积分10
35秒前
杨明智完成签到 ,获得积分10
37秒前
梦里的大子刊完成签到 ,获得积分10
49秒前
哈哈哈发布了新的文献求助10
50秒前
等待飞松发布了新的文献求助30
50秒前
蛙蛙完成签到,获得积分10
53秒前
敬业乐群完成签到,获得积分10
55秒前
领导范儿应助33采纳,获得30
55秒前
flyboy完成签到,获得积分10
56秒前
蓝莓小蛋糕完成签到 ,获得积分10
57秒前
dasdsad发布了新的文献求助10
1分钟前
BowieHuang应助风中的小松鼠采纳,获得10
1分钟前
1分钟前
Zzz呀完成签到 ,获得积分10
1分钟前
33完成签到,获得积分10
1分钟前
33发布了新的文献求助30
1分钟前
1分钟前
所所应助生动的板栗采纳,获得10
1分钟前
医疗废物专用车乘客完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561167
求助须知:如何正确求助?哪些是违规求助? 4646320
关于积分的说明 14678320
捐赠科研通 4587573
什么是DOI,文献DOI怎么找? 2517149
邀请新用户注册赠送积分活动 1490439
关于科研通互助平台的介绍 1461340