吸附
铀
生物吸附
化学
弗伦德利希方程
选择性
朗缪尔
盐(化学)
核化学
生物量(生态学)
吸附剂
吸附
色谱法
地质学
材料科学
有机化学
催化作用
冶金
海洋学
作者
Jing Bai,Xiaojie Yin,Yongfeng Zhu,Fangli Fan,Xiaolei Wu,Wei Tian,Cunmin Tan,Xin Zhang,Yang Wang,Shiwei Cao,Fuyou Fan,Zhi Qin,Guo Junsheng
标识
DOI:10.1016/j.cej.2015.08.011
摘要
In order to enhance the selectivity of Saccharomyces cerevisiae for uranium, amidoximation of the biomass was performed. The obtained biosorbent was characterized by FTIR and SEM analysis, results showed that amidoxime groups were successfully grafted on the biomass surface. The effects of initial solution pH, time, initial uranium concentration and ion strength on uranium sorption by the amidoximated biomass were studied and the optimal sorption conditions were determined. Furthermore, desorption results revealed that the amidoximated biosorbent can be used at least three times. The uranium sorption kinetics of both amidoximated and raw biomass can be depicted by the nonlinear pseudo-second-order kinetic equation. The nonlinear Langmuir and Freundlich models fitted well with the equilibrium data of amidoximated biomass. Trace uranium sorption from salt lake brine samples suggested that the selectivity of S. cerevisiae was obvious enhanced after amidoximation. The prepared amidoximated biomass can be used as a potential sorbent for selective uranium recovery from salt lake brines.
科研通智能强力驱动
Strongly Powered by AbleSci AI