Advances in Manganese‐Based Oxides Cathodic Electrocatalysts for Li–Air Batteries

材料科学 过电位 阴极保护 化学工程 尖晶石 电化学 析氧 纳米技术 催化作用 电极 冶金 化学 物理化学 生物化学 工程类
作者
Bao Liu,Yinglun Sun,Li Liu,Shan Xu,Xingbin Yan
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:28 (15) 被引量:166
标识
DOI:10.1002/adfm.201704973
摘要

Abstract Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO 2 with different crystal structures, MnO, MnOOH, Mn 2 O 3 , Mn 3 O 4 , MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dawn发布了新的文献求助10
刚刚
小酒发布了新的文献求助10
刚刚
1秒前
YanCuiShi完成签到,获得积分10
1秒前
大个应助ymX采纳,获得10
2秒前
风秋杨完成签到,获得积分0
4秒前
小卡发布了新的文献求助10
4秒前
puzhongjiMiQ发布了新的文献求助10
5秒前
墨羽完成签到,获得积分10
5秒前
吾将上下而求索应助经年采纳,获得10
5秒前
6秒前
燕子坞完成签到,获得积分10
6秒前
Monicadd完成签到 ,获得积分10
7秒前
Jasper应助YanCuiShi采纳,获得10
7秒前
风秋杨发布了新的文献求助10
8秒前
小石头完成签到,获得积分10
9秒前
阿挺3344发布了新的文献求助50
10秒前
707完成签到 ,获得积分10
11秒前
隐形曼青应助医大好学生采纳,获得10
12秒前
皮崇知发布了新的文献求助10
12秒前
可爱的函函应助puzhongjiMiQ采纳,获得10
13秒前
Lucas应助puzhongjiMiQ采纳,获得10
13秒前
无花果应助puzhongjiMiQ采纳,获得10
13秒前
小白完成签到,获得积分10
13秒前
xqa完成签到,获得积分10
14秒前
shimmer发布了新的文献求助10
15秒前
圆锥香蕉应助边边边1111采纳,获得60
15秒前
Unicorn完成签到,获得积分10
15秒前
健康豆芽菜完成签到 ,获得积分10
16秒前
Lynn完成签到 ,获得积分10
16秒前
潇潇发布了新的文献求助20
17秒前
19秒前
yy完成签到,获得积分10
19秒前
19秒前
21秒前
点凌蝶发布了新的文献求助20
23秒前
英姑应助wjw123采纳,获得10
23秒前
糖豆发布了新的文献求助10
23秒前
执着的科研小白完成签到,获得积分20
24秒前
sjy发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868