Effective data generation for imbalanced learning using conditional generative adversarial networks

过采样 计算机科学 机器学习 人工智能 班级(哲学) 生成语法 生成对抗网络 对抗制 加入 任务(项目管理) 数据挖掘 算法 模式识别(心理学) 深度学习 计算机网络 管理 带宽(计算) 经济 程序设计语言
作者
Georgios Douzas,Fernando Bação
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:91: 464-471 被引量:451
标识
DOI:10.1016/j.eswa.2017.09.030
摘要

Learning from imbalanced datasets is a frequent but challenging task for standard classification algorithms. Although there are different strategies to address this problem, methods that generate artificial data for the minority class constitute a more general approach compared to algorithmic modifications. Standard oversampling methods are variations of the SMOTE algorithm, which generates synthetic samples along the line segment that joins minority class samples. Therefore, these approaches are based on local information, rather on the overall minority class distribution. Contrary to these algorithms, in this paper the conditional version of Generative Adversarial Networks (cGAN) is used to approximate the true data distribution and generate data for the minority class of various imbalanced datasets. The performance of cGAN is compared against multiple standard oversampling algorithms. We present empirical results that show a significant improvement in the quality of the generated data when cGAN is used as an oversampling algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龍Ryu完成签到,获得积分10
刚刚
内向凌兰发布了新的文献求助10
1秒前
伍秋望完成签到,获得积分10
1秒前
2秒前
3秒前
跳跃发布了新的文献求助10
4秒前
持卿应助宗磬采纳,获得20
4秒前
4秒前
花生油炒花生米完成签到 ,获得积分10
4秒前
Riki完成签到,获得积分10
6秒前
虚幻白玉发布了新的文献求助10
6秒前
德行天下完成签到,获得积分10
6秒前
Jenny应助lan采纳,获得10
7秒前
fztnh完成签到,获得积分10
7秒前
上官若男应助lyz666采纳,获得10
7秒前
顾念完成签到 ,获得积分10
7秒前
277发布了新的文献求助10
8秒前
小二郎应助GCD采纳,获得10
9秒前
hhhhhh完成签到 ,获得积分10
9秒前
甜味拾荒者完成签到,获得积分10
11秒前
小二郎应助BONBON采纳,获得10
11秒前
12秒前
charllie完成签到 ,获得积分10
12秒前
空禅yew完成签到,获得积分10
13秒前
坚强亦丝应助跳跃采纳,获得10
15秒前
英俊的铭应助cc采纳,获得10
15秒前
huangsan完成签到,获得积分10
15秒前
匹诺曹完成签到,获得积分10
15秒前
16秒前
华仔应助进取拼搏采纳,获得10
16秒前
17秒前
dingdong发布了新的文献求助10
17秒前
you完成签到 ,获得积分10
18秒前
qwf完成签到 ,获得积分10
18秒前
19秒前
万能图书馆应助一一采纳,获得10
19秒前
执着跳跳糖完成签到 ,获得积分10
20秒前
阳yang完成签到,获得积分10
20秒前
牛头人完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808