医学
窦房结
心脏病学
生物医学工程
神经科学
内科学
计算机科学
生物
心率
血压
作者
Eugenio Cingolani,Joshua I. Goldhaber,Eduardo Marbán
标识
DOI:10.1038/nrcardio.2017.165
摘要
Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. Current pacemakers, although effective, have limitations including lead malfunction, lack of autonomic responsiveness, and device-related infections. In this Review, Marbán and colleagues discuss next-generation electronic devices designed to address current limitations, as well as biological pacemakers as alternatives to implantable hardware. Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI