Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

脑电图 模式识别(心理学) 网络动力学 功能连接 人工智能 默认模式网络 光谱图 动力学(音乐) 计算机科学 相关性 神经科学 心理学 数学 教育学 几何学 离散数学
作者
Martin Lamoš,Radek Mareček,T. Slavicek,Michal Mikl,Ivan Rektor,Jiří Jan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (3): 036025-036025 被引量:15
标识
DOI:10.1088/1741-2552/aab66b
摘要

Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity.The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns.We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network.Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
计划明天炸地球完成签到,获得积分10
刚刚
HR112应助沉默的小天鹅采纳,获得10
1秒前
研友_Y59785应助彳亍采纳,获得10
1秒前
CodeCraft应助122319采纳,获得10
1秒前
1秒前
1秒前
苹果发布了新的文献求助10
2秒前
小艳胡发布了新的文献求助10
2秒前
2秒前
鹿子完成签到 ,获得积分10
2秒前
2秒前
2秒前
zJx丶发布了新的文献求助10
3秒前
desperado完成签到 ,获得积分10
4秒前
榜一大哥的负担完成签到 ,获得积分10
4秒前
奈何人生发布了新的文献求助10
4秒前
4秒前
Yang完成签到,获得积分10
4秒前
冰冰完成签到,获得积分20
5秒前
wufel完成签到,获得积分10
5秒前
JKJ发布了新的文献求助10
5秒前
121发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
李健应助张润泽采纳,获得10
7秒前
IETPer发布了新的文献求助10
7秒前
7秒前
欣喜访旋发布了新的文献求助10
7秒前
8秒前
汉堡包应助ouyggg采纳,获得10
8秒前
冰冰发布了新的文献求助10
8秒前
背后的桐发布了新的文献求助10
9秒前
小二郎应助lzx采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
昏睡的蟠桃应助杨旭采纳,获得100
11秒前
Change_Jing完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635