Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

脑电图 模式识别(心理学) 网络动力学 功能连接 人工智能 默认模式网络 光谱图 动力学(音乐) 计算机科学 相关性 神经科学 心理学 数学 几何学 教育学 离散数学
作者
Martin Lamoš,Radek Mareček,T. Slavicek,Michal Mikl,Ivan Rektor,Jiří Jan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (3): 036025-036025 被引量:15
标识
DOI:10.1088/1741-2552/aab66b
摘要

Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity.The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns.We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network.Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
刚刚
怕黑的晓曼完成签到,获得积分10
刚刚
俭朴的小蚂蚁完成签到,获得积分20
1秒前
李健的小迷弟应助注米采纳,获得10
1秒前
小年兽发布了新的文献求助10
1秒前
忧郁绣连发布了新的文献求助10
2秒前
优美的小小完成签到,获得积分10
2秒前
2秒前
2秒前
ningmengcao发布了新的文献求助10
3秒前
wswwhy完成签到,获得积分10
3秒前
阳光的衫完成签到,获得积分10
4秒前
lf发布了新的文献求助20
5秒前
CiCi完成签到,获得积分10
5秒前
5秒前
李健应助YMY采纳,获得10
6秒前
chenchen发布了新的文献求助10
7秒前
shor0414发布了新的文献求助10
7秒前
顾矜应助阳光的衫采纳,获得10
7秒前
FashionBoy应助郑泽森采纳,获得10
7秒前
李健应助爱丽丝敏采纳,获得10
7秒前
科研通AI2S应助求学采纳,获得10
9秒前
风起发布了新的文献求助10
10秒前
12秒前
汉堡包应助tian采纳,获得10
12秒前
彩色的白秋完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
烟花应助chenchen采纳,获得10
14秒前
14秒前
情怀应助哈哈哈采纳,获得10
15秒前
忧郁绣连完成签到,获得积分10
16秒前
咕噜噜完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
19秒前
YMY发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102382
求助须知:如何正确求助?哪些是违规求助? 2753656
关于积分的说明 7624478
捐赠科研通 2406188
什么是DOI,文献DOI怎么找? 1276717
科研通“疑难数据库(出版商)”最低求助积分说明 616918
版权声明 599103