High-Resolution Vegetation Mapping Using eXtreme Gradient Boosting Based on Extensive Features

植被(病理学) 遥感 植被分类 环境科学 工作流程 高分辨率 自然地理学 地图学 地理 计算机科学 医学 数据库 病理
作者
Heng Zhang,Anwar Eziz,J. Xiao,Shengli Tao,Shaopeng Wang,Zhiyao Tang,Jiangling Zhu,Jingyun Fang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 1505-1505 被引量:37
标识
DOI:10.3390/rs11121505
摘要

Accurate mapping of vegetation is a premise for conserving, managing, and sustainably using vegetation resources, especially in conditions of intensive human activities and accelerating global changes. However, it is still challenging to produce high-resolution multiclass vegetation map in high accuracy, due to the incapacity of traditional mapping techniques in distinguishing mosaic vegetation classes with subtle differences and the paucity of fieldwork data. This study created a workflow by adopting a promising classifier, extreme gradient boosting (XGBoost), to produce accurate vegetation maps of two strikingly different cases (the Dzungarian Basin in China and New Zealand) based on extensive features and abundant vegetation data. For the Dzungarian Basin, a vegetation map with seven vegetation types, 17 subtypes, and 43 associations was produced with an overall accuracy of 0.907, 0.801, and 0.748, respectively. For New Zealand, a map of 10 habitats and a map of 41 vegetation classes were produced with 0.946, and 0.703 overall accuracy, respectively. The workflow incorporating simplified field survey procedures outperformed conventional field survey and remote sensing based methods in terms of accuracy and efficiency. In addition, it opens a possibility of building large-scale, high-resolution, and timely vegetation monitoring platforms for most terrestrial ecosystems worldwide with the aid of Google Earth Engine and citizen science programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡然以蓝完成签到,获得积分10
1秒前
2秒前
科研小虫发布了新的文献求助20
2秒前
2秒前
3秒前
柚子街发布了新的文献求助10
4秒前
学术猪八戒完成签到,获得积分10
4秒前
5秒前
6秒前
aaa发布了新的文献求助10
7秒前
7秒前
CipherSage应助清风不渡夜采纳,获得10
7秒前
MOMO科研版关注了科研通微信公众号
7秒前
九又四分之三完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得30
9秒前
bjbmtxy应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
ding发布了新的文献求助30
10秒前
10秒前
qin完成签到,获得积分10
11秒前
12秒前
13秒前
sjz发布了新的文献求助10
13秒前
咕噜快逃完成签到,获得积分10
13秒前
专注映安完成签到 ,获得积分10
13秒前
14秒前
孝艺发布了新的文献求助10
15秒前
charllie完成签到 ,获得积分10
17秒前
殊晗发布了新的文献求助10
18秒前
19秒前
半醒完成签到,获得积分10
19秒前
dilxat发布了新的文献求助10
20秒前
时尚灵安完成签到 ,获得积分20
22秒前
23秒前
如约而至完成签到 ,获得积分10
24秒前
FashionBoy应助信封_采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693361
求助须知:如何正确求助?哪些是违规求助? 3244057
关于积分的说明 9845755
捐赠科研通 2956054
什么是DOI,文献DOI怎么找? 1620742
邀请新用户注册赠送积分活动 766727
科研通“疑难数据库(出版商)”最低求助积分说明 740517