植被(病理学)
遥感
植被分类
环境科学
工作流程
高分辨率
自然地理学
地图学
地理
计算机科学
医学
数据库
病理
作者
Heng Zhang,Anwar Eziz,J. Xiao,Shengli Tao,Shaopeng Wang,Zhiyao Tang,Jiangling Zhu,Jingyun Fang
出处
期刊:Remote Sensing
[Multidisciplinary Digital Publishing Institute]
日期:2019-06-25
卷期号:11 (12): 1505-1505
被引量:37
摘要
Accurate mapping of vegetation is a premise for conserving, managing, and sustainably using vegetation resources, especially in conditions of intensive human activities and accelerating global changes. However, it is still challenging to produce high-resolution multiclass vegetation map in high accuracy, due to the incapacity of traditional mapping techniques in distinguishing mosaic vegetation classes with subtle differences and the paucity of fieldwork data. This study created a workflow by adopting a promising classifier, extreme gradient boosting (XGBoost), to produce accurate vegetation maps of two strikingly different cases (the Dzungarian Basin in China and New Zealand) based on extensive features and abundant vegetation data. For the Dzungarian Basin, a vegetation map with seven vegetation types, 17 subtypes, and 43 associations was produced with an overall accuracy of 0.907, 0.801, and 0.748, respectively. For New Zealand, a map of 10 habitats and a map of 41 vegetation classes were produced with 0.946, and 0.703 overall accuracy, respectively. The workflow incorporating simplified field survey procedures outperformed conventional field survey and remote sensing based methods in terms of accuracy and efficiency. In addition, it opens a possibility of building large-scale, high-resolution, and timely vegetation monitoring platforms for most terrestrial ecosystems worldwide with the aid of Google Earth Engine and citizen science programs.
科研通智能强力驱动
Strongly Powered by AbleSci AI